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Abstract. We introduce a method that aims to find the global minimum of a continuous nonconvex
function on a compact subset Bf. It is assumed that function evaluations are expensive and that
no additional information is available. Radial basis function interpolation is used to define a utility
function. The maximizer of this function is the next point where the objective function is evaluated.
We show that, for most types of radial basis functions that are considered in this paper, convergence
can be achieved without further assumptions on the objective function. Besides, it turns out that
our method is closely related to a statistical global optimization method, the P-algorithm. A general
framework for both methods is presented. Finally, a few numerical examples show that on the set
of Dixon-Szegd test functions our method yields favourable results in comparison to other global
optimization methods.
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1. Introduction

Global optimization has attracted a lot of attention in the last 20 years. In many
applications, the objective function is nonlinear and nonconvex. Often, the number
of local minima is large. Therefore standard nonlinear programming methods may
fail to locate the global minimum.

In the most general way, the Global Optimization Problem can be stated as

(GOP) findx* € D such thatf (x*) < f(x), x € D,

whereD c R¢ is compact, andf : & — R is a continuous function defined on
D. Under these assumptions, (GOP) is solvable, becAwtins its minimum on
D.

Numerous methods to solve (GOP) have been developed (see e.g. Horst and
Pardalos [4] and Térn and Zilinskas [19]). Stochastic methods like simulated an-
nealing and genetic algorithms which use only function values are very popular
among users, although their rate of convergence is usually rather slow. Determ-
inistic methods like Branch-and-Bound, however, assume that one can compute
a lower bound off on a subset ofD. This can be done, for example, when the
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(b)

Figure 1. The function whose graph is the solid line is to be minimized. The dots in (a)
indicate the points where the function values are known. The dotted line in (a) is the graph
of the response surface. Sampling the function at the global minimizer of this surface gives
the new response surface in (b). A better estimate of a local minimum has been found, but the
global minimum is missed.

Lipschitz constant orf is available. The further assumptions make these methods
very powerful, but often they are not satisfied or it is too expensive to provide the
necessary information.

For the method investigated in this paper, we have in mind problems when the
only information available is the possibility to evaluate the objective function, and
each evaluation is very expensive. This may mean that it takes several hours to
calculate a function value. For example, a function evaluation at a point may be
done by building an experiment, by running a long computer simulation or by
using a finite element method. Therefore, the duration of an optimization process
is dominated by the function evaluations. As it can take very long to compute a
global minimum in such a case, users often are satisfied when an adequate estimate
of the global minimum is obtained. Thus, our goal is to require as few function
evaluations as possible to find such an estimate.

Response surface methods have been developed to solve this kind of problem.
Given points and their function values, a response surface can be computed that
interpolates the objective function at these points. For many smooth objective func-
tions such aresponse surface can identify the region of a global minimum after only
a few function evaluations.

After having found a response surface, a naive idea would be to choose the
global minimizer of the surface and evaluate the objective function there. However,
if this process is iterated, the global minimum might be missed (see Figure 1). This
happens because one trusts the surface model without taking into account possible
errors.

To avoid this problem the decision on where to evaluate the objective function
next must be based on the response surface model and a measure of the error in this
model. If one knew the global minimum value, one could choose any paamid
assume that it is a global minimizer. Then a response surface can be fitted through
this point and the existing points. Intuitively, if this surface is very ‘bumpy’, it is
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Figure 2. An example of the measure of ‘bumpiness’, where the dotted line indicates the
global minimum. The response surface in (a) is less ‘bumpy’ than the one in (b).

unreasonable to expect thats a global minimizer. So one would choose the next
point to be the one that yields the ‘least bumpy’ of all these response surfaces.
Normally, of course, the optimal value is not known. Then one can choose an
estimate instead of the true value and follow the idea above. An example of two
different levels of ‘bumpiness’ is given in Figure 2.

A general response surface technique has been proposed by Jones [8]. Let
be a linear space of functions, and assume thats far #, o (s) is a measure
of the ‘bumpiness’ ok. Now assume that we have calculated. .. , x, and the
function valuesf (x1), ..., f(x,). Atarget valuef* is chosen that can be regarded
as an estimate of the optimal value, but it might be very crude. For gagh
{x1,...,x,}, lets, € A be defined by the interpolation conditions

sy(xp)) = f(xp), i=1...,n,
sy(y) :f*

The new pointx,;1 is chosen to be the value of that minimizeso (s,), y ¢
{x1,...,x,}.

Our method is based on this technique where we use radial basis functions
as interpolants. Their interpolation properties are very suitable. Specifically, the
uniqueness of an interpolant is achieved under very mild conditions on the location
of the interpolation points, and a measure of bumpiness is also available.

Close relations can be established between our method and one from statistical
global optimization, namely the P-algorithm (Zilinskas [22]). Although being de-
rived using a completely different approach, it is very similar to our method. One
special case of a P-algorithm, developed by Kushner [12], is even equivalent to a
special case of our radial basis function method.

Other global optimization methods based on radial basis functions have been
developed. Alotto et al. [1] use interpolation by multiquadrics to accelerate a sim-
ulated annealing method. Ishikawa et al. [6, 7] employ radial basis functions to
estimate the global minimizer and run an SQP algorithm to locate it.

The properties of radial basis functions that are necessary for the description
of our method are introduced in the following section. In particular, we address

(1.1)
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the question of interpolation and introduce a suitable measure of ‘bumpiness’. The
global optimization method is described in detail in Section 3. Convergence of the
method is the subject of Section 4. The proof of the main theorem can be found in
the Appendix. The relation between our method and the P-algorithm is addressed
in Section 5. The final section deals with search strategies, but a complete analysis
is beyond the scope of this paper.

2. Interpolation by Radial Basis Functions and a Measure of Bumpiness

The radial basis function interpolation problem is as follows./Lpairwise differ-
ent pointsxy, ... , x, € R? and dataf, ..., f, € R be given, where andd are
any positive integers. We seek a functioof the form

s@) =Y id(lx —xl) + p(x), xR, (2.1)

i=1

that interpolates the datas, f1), ..., (x,, f,). The coefficients.;, i =1, ... ,n,
are real numbers, and the nofinj is the Euclidean norm iiR?. p is fromI1,,, the
space of polynomials of degree less than or equad,toe. it can be expressed as a
linear combination of functions;® ... x%, x € R?, wherek; + ...+ ks < m. We
letIT_; := {0}. The following choices op are considered:

o@r) = r (linear),

o) = r (cubic),

¢(r) = r?logr (thin plate spline) r >0, (2.2)

¢(r) = /r*>+ y? (multiquadric)

o@r) = e’ (Gaussian)
wherey is a prescribed positive constant.

It would be obvious to sez = —1 so that (2.1) is a linear combination of the

basis functionss(]. — x;11), i = 1, ..., n, only. However, the matrix € R"*"
that is defined by

(CD)IJ :d)(”xl _x]”)’ l’] :17 > 1, (23)
might be singular. For example, #(r) = r?logr, n = d + 1 and the points
x1, ..., %441 form a simplex where all the edges have length 1, tieea- 0. So
for m = —1 and nonzero data there is no interpolant (2.1). However, any data
f1, ..., far1 Ccan be interpolated by a linear polynomial. Thus the interpolant (2.1)
existsifa; =0,i =1, ..., n,andif pis this interpolating polynomial. Further, the

general form (2.1) allows more freedom in defining a suitable measure of bumpi-
ness. In general, our task now is to find valuesiothat guarantee existence and
uniqueness of an interpolant (2.1) and a measure of its bumpiness.

The key to this task is the concept of conditional definiteness. Forgaadm
(2.2), @ is conditionally positive or negative definite. Specifically, 6t C R" be
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the linear space of all € R” that satisfy

n

Y hiq(x) =0 Vg ell,. (2.4)
i=1

Formally, we seV_; := R". Obviously,V,,.1 C V,, forallm > —1. Powell [15]
shows that, in the cubic and thin plate spline cases

ATdr >0 VaeV\ {0}, (2.5)
in the linear and multiquadric cases

ATdr <0 Vae Vo ({0}, (2.6)
and in the Gaussian case

ATdr >0 VaeR"{0. (2.7)

We letmg be 1 in the cubic and thin plate spline cases, 0 in the linear and multi-
quadric cases andl in the Gaussian case. Then the inequalities (2.5) — (2.7) can
be merged into

(=)t TdL >0 VeV, {0} (2.8)

After choosingp, we letm be an integer that is not less thag, and is confined
to V,,.

Let m be the dimension of1,,, let p4, ..., p; be a basis of this linear space,
and letP be the matrix

pi(x1) -+ pa(x1)
P := : : . (2.9)
pl(-xn) T piﬁ(-xn)

ThenV,, is the space of all € R” that satisfyP” A = 0. Further, it can be shown
(see [15]) that the matrix

_( ® P (i) X (n-+1i)
A_<PT0)G]R (2.10)
is nonsingular if and only ify, ... , x, satisfy
gell, and ¢(x;)=0, i=1...,n, — gqg=0. (2.11)

In the Gaussian case witlhh = —1, P and condition (2.11) are omitted. Therefore
the coefficients of the functionin (2.1) are defined uniquely by the system

s(x)) = fi, i=1...,n

D hipitn) =0, j=1....M (2.12)
i=1
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Let F be the vector whose entries are the data valfses. . , f,. Then the system
(2.12) becomes

(7 o)(c)=(a) @19

wherex = (A1, ..., 4,7 € R”, c € R™ and @, is the zero ifR™. The components
of ¢ are the coefficients of the polynomialwith respect to the basjs,, ... , p;.

The motivation for the measurement of the bumpiness of a radial basis function
interpolant can be developed from the theory of natural cubic splines in one dimen-
sion. They can be written in the form (2.1), wheré) = 3, A € Vy andp € I1;.

It is well known (e.g. Powell [14]) that the interpolamtthat is defined by the
system (2.12) minimize$(g) := fR[g”(x)]zdx among all functiong : R — R

that satisfy the interpolation conditiogx;) = f;, i = 1, ..., n, and for which
I(g) exists and is finite. ThereforE(g) is a suitable measure of bumpiness. The
second derivative” is piecewise linear and vanishes outside a bounded interval.
Thus one obtains by integration by parts

I(s) = /[s”(x)]zdx = 122A,-s(x,-)
R i=1

- 122x,- Z,\j|x,-—xj|3+p(x,-) = 1227 ®a,
i=1 j=1

where the last equation follows frome V;. This relation suggests that expression
(2.8) can provide a semi-inner product and a semi-norm for each(2.2) and
m > mo. Also, the semi-norm will be the measure of bumpiness of a radial basis
function (2.1). A semi-inner produgt, .) satisfies the same properties as an inner
product, except thals, s) = 0 need not imply = 0. Similarly, for a semi-norm
II.Il, IIs]l = O does not imply = 0.

We choose any radial basis function from (2.2) amd> mq, and we define
Ay m 10 be the linear space of all functions of the form

N
Y higllx — yil) + p(x),  x eRY,

i=1

whereN € IN, y1, ... ,yy € RY, p € I1,,, andr = (A, ..., Ay)T satisfies (2.4)
for n = N. On this space, the semi-inner product and the semi-norm are defined as
follows. Lets andu be any functions in4, ,,, i.e.

N(s) N(u)

s =Y mgp(lx — i)+ p@) and u(x) =Y pwid(lx — ;1) + g ).

i=1 Jj=1
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We let the semi-inner product be the expression

N(s)

(s, u) == (=" " Au(yi). (2.14)

i=1

Clearly, it is bilinear. To show symmetry, we use

N(s) N(u)
D hiq(y) =0 and > u;p(z;) =0,
i=1 j=1
to deduce
N(s) N(u)

(s.u) = (=D " a [ D widly — 25 + ()
i=1 j=1

N(s) N(u)
= (D" had(lyi — 251
i=1 j=1
N(u) N(s)
= (D)"Y (Z i (llzj — yell) + p(z;))
j=1 i=1
N(u)
= (D" sz = (u, s).
j=1

By (2.8),

N(s) N(s)

(s,8) = (=D" > " ais(y) = (D" > " aidip(llyi — yil) - (2.15)

i=1 ij=1

is strictly positive, ifA € V,, \ {0} andm > my, i.e. s € 4 , iS NOt a polynomial
in IT,,. Thus (2.14) is a semi-inner product 6%y, ,, that induces the semi-norm
(s, s) with null spacell,, (for details see Powell [16] and Schaback [17]).

In analogy to the variational principle for cubic splines in one dimension, men-
tioned above, there is a theorem that states that the given interpolant is the solution
to a minimization problem.

THEOREM 1. (Schaback [17])Let¢ be any radial basis function from (2.2), and
let m be chosen such that > mg. Given are pointsty,. . ., x, in R having the
property (2.11) and valueg,, ... , f, in R. Lets be the radial function of the form
(2.1) that solves the system (2.12). Theninimizes the semi-norfg, g)*/ on the
set of functiong € A, , that satisfy

gx)=fi, i=1...,n (2.16)
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3. A Radial Basis Function Method

It will be shown how radial basis functions can be used in the general method of
Jones [8] to solve the problem (GOP) (cf. Powell [16]). As in Section 2, we pick

¢ from (2.2) andn > mq. Let pq, ..., p; be a basis ofl,,, wherem = dimTI,,.
Assume we have chosen, ... ,x, € D that satisfy (2.11), and we know the
function valuesf (x1), ..., f(x,). Let the function

i) =Y Md(lx —x|) + p(x), x €R%

i=1

interpolate(xy, f(x1)), ..., (x,, f(x,)). Ourtaskis to determine, ;. For atarget
value f;* and a pointy € D \ {x1, ... , x,} the radial basis functios, that satisfies
(1.1) can be written as

sy(X) = 5,(0) + L) = sa(N]u(y. x),  x €RY, 3.1)

wherel, (y, x) is the radial basis function solution to the interpolation conditions

En(y’-xi) = 0, l=1, , n,
En(y’y) = 1

Thereforet, (y, .) can be expressed as

(3.2)

Gy, x) =Y ai(MBlx — 51D + a M Ulx = yI) + Y bi(¥) pi(x),

i=1 i=1
x € R,
(3.3)
As in equation (2.10), leA(y) be the matrix
® u(y) P
A(y) == [ u(m’ ¢ 7" |, (3.4)
PT 7w(y) Opwi

whereu(y) andsx (y) are the vectors

u() = @Uy = xl), .., Uy —xN"

and

() = (p1(y), .- P,

respectively. Then the coefficients §f(y, .) are defined by the equations

a(y) 0,
A | wa | = 1], (3.5)
b(y) O
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wherea(y) = (@1(y), ..., 0, ()" € R", b(y) = (b1(¥), ..., ba(¥)" € R™,
w.(y) € R, 0, and Q; denote the zero iR” andR™, respectively.

The square of the semi-nortn,, s,) of the new interpolant (3.1), as defined in
the previous section, has the value

<Sy7 Sy) = (Su» Sn) + 2[]0,1>k =S (M 1{sn, £n(y, )
+LF = 5a PP (3, ), £a (Y, ).
Equations (2.14) and (3.2) imply
(5, La(y, D) = (=" "0l (y, x;) =0,
i=1

and, using expressions (3.2) and (3.3), we find the expression

(n(y, ) £n(y, )

(=1t [Z @i (V) (y, Xi) + tta (V)€ (3, y)}

i=1
= (1", (). (3.6)
Thus we deduce the formula
(835 83) = (S $) + (D™, D L = 5017
Further, we define the functiag), : D \ {x1, ..., x,} — R as the difference
gn(y) = (85, 8y) = (s, 80) = (=", O LS, — 5T

which is nonnegative. Singg,, s,,) is independent of, the required minimization
of (sy, s,) and the minimization o, (y) are equivalent.
The choice off,* determines the location af,,1. If

Q%XSn(y) > f) 2 Eneiggsn(y),
theng,(y) = 0 can be achieved. However, if
¥ < mins,(y),
yedD

thenx, 1 will be away from thex;, i = 1,...,n. In particular, forf — —oo,
we make the following deduction.

REMARK 2. For £ < min,cp 5,(y) letx(f;) be the minimizer og,, i.e.

(=D, (SN Isn (X () — 712 < (=D, (0D sn (v) — 712
Vye D\ {x1,...,x,}.
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This is equivalent to

$n(¥) = Sn (x(fn*))T
s (f) — fr |

As f* — —oo, the boundedness of on D implies

(=DM, (x(—00)) < (=)™, (y) Yy e D\ {x1, ..., %}

(=D, (e (£5) < (=)™, () [1 +

Therefore, the choicg’ = —oo requires the minimization of the functiga-1)"o*1
w.(¥). This process puts,,; in a large gap between, i =1, ... ,n, a property
that is of fundamental importance to global optimization.

The following basic algorithm employs the given method.

ALGORITHM 3.

Initial step: Pick¢ from (2.2) andn > my.
Choose pointsy, ... , x,, € O that satisfy (2.11). Compute the radial func-
tion s, that minimizesgs, s) on 4, ,,, subject to the interpolation conditions

s(x))=f(x), i=1,...,n.

Iteration step: x4, ..., x, are the points inD where the value of is known,
ands, minimizes(s, s), subject tas(x;) = f(x;), i =1,... ,n.
Choose atarget valug’ € [—oo, min,co s,(y)]. (The choicef,” = mins, (y)
is admissible only if none of the is a global minimizer of,,).

Calculatex, 1, which is the value of that minimizes the function

gn(y) = (—1)'n°+lM;1(y) [Sn(y) - fn*]zv y e D \ {-xla o v-xn}- (37)

Evaluatef atx,,; and sets :=n + 1.
Stop, ifn is greater than a prescribed,,,,, .

The functiong, is infinitely differentiable onD \ {xi, ... , x,}, but is not defined
at the interpolation points. If,” = mins,(y), y € O, and ifs,(x;) > f, i =
1, ..., n, then the global minimizers qf, are the global minimizers of,. Thus
one can minimiza,, which is defined on the whole @, to obtainx, 1. If £ <
mins, (y), however, therg, (x) tends to infinity as tends tax;, i = 1, ..., n. Let
h, : O — R be defined as

> y ¢{x1,... ,x,,}
ha(y) =1 &) : (3.8)

0, y=x;,i=1...,n

The maximization oh, on D is equivalent to the minimization @f,. Furtherp,, is
infinitely differentiable onD \ {x1, ... , x,}. It can also be shown, using the system
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(3.5), that it is inC (D) in the linear case, iIC1(D) in the thin plate spline case, in
C2?(D) in the cubic case, and ifi* (D) in the multiquadric and Gaussian cases.

Under certain conditions ofi and the valueg,", n — oo, it can be proved that
a subsequence of the generated po{rts,cny converges to a global minimum.
This is the subject of the following section.

4. Convergence of the Method

Our aim is to prove convergence of the method for any continuous fungti@a
theorem by Torn and Zilinskas [19] tells us that the sequence that is generated by
Algorithm 3 should be dense. Applied to our method, it states

THEOREM 4. The algorithm converges for every continuous functfoif and
only if it generates a sequence of points that is densB.in

So our task is to establish the density of the sequence of generated points.

The convergence result does not allow a free choice of the target vgluE®-
ure 1 shows that the global minimum might be missed,ifs set to minco s, (y)
on each iteration, provided this choice is admissible. Therefore, we have to assume
that enough of the numbers min(y) — f,* are sufficiently large. Specifically, let
7 > 0 and p > 0 be constants, where additionajly < 1 in the linear case and
p < 2in the thin plate spline and cubic cases, and define

Ay = minlx, — x|l (4.2)

1<i<n—1

Then the condition

mins,(y) — £ > tA”?||s, o, (4.2)
yedD

for infinitely manyn € IN, will lead to the required result. Hefg|| ., denotes the
maximum norm of a function oD, defined by

Igle == Mmaxig(x)l, g € C(D).

We note that the normis,, ||, may diverge ag — oco.

Unfortunately, the choice @f andm is restricted. In the proof of Theorem 7 we
need the result that, for anye D and any neighbourhoat of y, (—=1)"0* 1, (y)
can be bounded above by a number that does not dependfarone of the points
x1, ..., X%, 1S in U. This condition is achieved, if there is a function that takes the
value 1 aty, that is identically zero outsid&, and that is in the function space
Ny m(RY) as defined below.

DEFINITION 5. Let¢ from (2.2) andn > mg be given. A continuous function
F: D — R, D C RY belongs to the function spack; ,, (D), if there exists a
positive constant such that, for any choice of interpolation pointg ... , x, €
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D for which (2.11) holds, the interpolant, € #4, , to F at these points has the
property

(Sl’h Sn) < C

The characterization o#, ,,(D) is rather abstract. In the linear, cubic and
thin plate spline cases, the following proposition that is taken from Gutmann [3]
provides a useful criterion to check whether it is satisfied. In the multiquadric and
Gaussian cases, however, no such criterion is known.

PROPOSITION 6. Let ¢(r) = r, ¢(r) = r? logr or ¢(r) = r3. Further, let
k = 1in the linear casex = 2 in the thin plate spline case and = 3 in the
cubic case, and choose the integersuch that0 < m < d in the linear case,
1 < m < d+ 1lin the thin plate spline case afd < m < d + 2 in the cubic
case. Define® := (d + «)/2if d + k is even, and := (d 4+ « + 1)/2 otherwise. If
F € C¥(RY) has bounded support, theh € N, (RY).

Global convergence will be established only for the cases covered by this pro-
position. It remains an open problem whether a similar property is achieved in other
cases. Thus we have the following theorem.

THEOREM 7. Leto(r) = r, ¢(r) = r?logr or ¢(r) = r°. Further, choose
the integerm such that0 < m < d in the linear casel < m < d + 1in the
thin plate spline case antl < m < d + 2 in the cubic case. Latx, ), be the
sequence generated by Algorithm 3, apdbe the radial function that interpolates
(xi, f(x),i = 1,...,n. Assume that, for infinitely mamy € IN, the choice of
1 satisfies (4.2). Then the sequerieg) is dense inD.

The proof of Theorem 7 is given in the Appendix.
A particular convergence result follows immediately from Theorems 4 and 7,
because the right hand side of (4.2) is some real number.

COROLLARY 8. Letthe assumptions of Theorem 7gandm hold. Further, let
f be continuous, and, for infinitely manye IV, let f* = —oo. Then the method
converges.

An interesting question is to find conditions grsuch that the maximum norm
of an interpolant is uniformly bounded. If they hold, then the right-hand side of
(4.2) can be replaced byA,@’/ 2. s0 this constraint orf.* can be checked easily. We
consider the special case of linear splines in one dimension, whet, ¢ (r) = r
andm = 0. For arbitrary pointsy, ... , x,, the piecewise linear interpolast
attains its maximum and minimum values at interpolation points. Thus,, is
bounded by|| f .., @ number that does not depend on the interpolation points.
Therefore in this case the teriw, || ., Mmay be dropped from (4.2).

For other radial basis functions and other dimensions this simplification may
fail. It is shown in the next lemma, however, that the uniform boundedness of
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the semi-norm of an interpolant is sufficient for the uniform boundedness of the
maximum norm. Thus, the second convergence result applies to fungtiams
°N‘¢,m(°(D)-

LEMMAO. Let f be inNy , (D). Further, let(x,),n be a sequence i with
pairwise different elements, such that (2.11) holds#oe ng. For n > ng, de-
note the radial basis function interpolant at x4, ... , x, bys,. Then||s, ||« IS
uniformly bounded by a number that only dependson. . , x,,.

Proof. We fix n, and we lety be any point ofD \ {x1,...,x,}. Lets, be
the radial function that interpolates, f(y)) and (x;, f(x;)), i = 1,...,n. By
analogy with Equation (3.1), it can be written as

§5,(x) = 5,(0) + [f () — (MW (y, x), x €RY,
wheret, (y, .) is still the cardinal function that interpolatés;, 0), i = 1, ... ,n,
and(y, 1). Thus, as shown in Section 3,

(gnv gn) = (Sn, sn) + [f(y) — Sn (y)]z (_1))110—}-1“’1 (J’),
which gives the equation

2 (gn, En) - (sm Sn)

[FO) =] = " 5

the value of(—1)"°*1., (y) being strictly positive.

Next we show that—1)"o*1u, (y) is bounded away from zero. LéL,(y,.)
be the cardinal function that interpolates, 0), ... , (x,,, 0) and(y, 1). Then the
semi-norm properties df, .) and Theorem 1 imply

0< (—1)m°+lM;1o(y) = (Eno(ya -)a gno (yv ))
< (y, )5 La(y, D)) = (=D, (y).

Forn = ng, let A andA(y) be the matrices (2.10) and (3.4), respectively. By using
Cramer’s Rule to solve (3.5), we find
detA
detA(y)
Now detA is a nonzero constant, and dgty) is bounded onD. It follows that

(—=1mo+1p, (v) is bounded away from zero. Therefore there exists a constant
0 such that

(4.3)

Mno(y) =

(=", (N >a YyeD\ {xi,... , Xnots 1= No. (4.4)

As f € Ny u(D), (5,,5,) is bounded above by a positive constdhtFurther,
(., 8,) IS nonnegative. It follows from (4.3) and (4.4) that

C
Lf() = s < \/;, yeD\{xg, ..., x}
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Further, becausg is bounded oD, we obtain

C
lsn D < 3/ =+ 11 f lloo-
o

Note that the right-hand side is independent @ndy, as required. Alternatively,
if yel{xi,...,x,}, we have

s D= 1D < 1 f oo

which completes the proof. O

Next, by applying Proposition 6, we obtain a criterion that ensuresjthatn
°N‘¢,m(°(D)-

PROPOSITION 10.Let ¢, m and v be defined as in Proposition 6, and lgte
C" (D), whereD C R? is compact. Therf € Ny, (D).

Proof. By Whitney’s theorem ([20]),f can be extended to a functiafi €
C'(RY) that is equal tof on D. Now D is contained in a closed ball of radius
3, say, and there is an infinitely differentiable functigmvith g(x) = 1, ||x|| < §,
andg(x) = 0, ||x|| > 28. ThusF - g is in C"(R?), and by Proposition 6 it is in
Ny.m(RY). SinceF - g is equal tof on D, it follows from the definition of the
semi-norm thatf € N, ,, (D). O

We complete this section by combining Theorem 7, Lemma 9 and Proposition 10.

COROLLARY 11. Let the assumptions of Theorem 7 ®andm hold. Letv be
as in Proposition 6, and lef € C" (D). Further, assume that, for infinitely many
n € IN, f; has the property

H 2
mlnsn(y) - fn* 2 TA,‘;/ )
yedD

wheret > 0is a constant, and whera, and p are as in the beginning of this
section. Then the method converges.

5. Relations to Statistical Global Optimization

In this section we consider the similarities between the given radial basis function
method and the P-algorithm. The idea of that method is proposed by Kushner [11,
12] for one-dimensional problems. Here the objective function is regarded as a
realization of a Brownian motion stochastic process. If real numbets. .. < x,

are given, and their function value&xy), ..., f(x,) have been calculated, the
model yields, for each in the feasible set, a mean value Méanand a variance
Var(x). Mean(x) serves as a prediction of the true function value,athile Var(x)

is @ measure of uncertainty. It turns out that Mean is the piecewise linear interpolant
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of the given data. The variance is piecewise quadratite@n, ], nonnegative and
takes the value zero at, ..., x,. For a real numbek, let F, be the normally
distributed random variabl&, with mean Meafx) and variance Vdr). Now a
nonnegative:, is chosen, and the next point,, will be the one that maximizes
the utility function

P (Fx < min f(x) - en> , xedD, (5.1)
where P denotes probability. One can show that maximizing (5.1) is equivalent to
maximizing

Var(x)

[Mean(x) — min{f(x1), ..., f(x)} + €1

Compare our method in one dimension with the choice of linear splineg(ie=
r andm = 0, and with the target values

fn* = min{f(xl)a sy f(-xn)} — €p.

In this case, the interpolanj, is identical to Mean. Further, except for a constant
factor,

x € D. (5.2)

1
Un(x)

Therefore, Kushner's method and our method using linear splines are equivalent.
Zilinskas [21, 22] extends this approach to Gaussian random processes in sev-
eral dimensions. He uses the selection rule (5.1) and introduces the name ‘P-
algorithm’. In addition, he gives an axiomatic description of the terms involved
in (5.1), namely the mean value function, the variance function and the utility
function. We relate these results to our method.
Consider a symmetric function : RY x R — R, (x,z) — o(x,z), and
assume that is conditionally positive or negative definite of order This means,
there existsx e {0, 1} such that, givem different pointsxy, ... ,x, € R? and
multipliersiy, ... , A, € R, we have

Var(x) = —

(_1)01 Z Aikjo(xi, Xj) > 0,
i,j=1

ifthex;, i =1,...,n, are not all zero and satisfy
n
Z)Vip(xi) = 0, JZES 1_Im-
i=1

Denote the matrix with the elements(x;, x;), i, j = 1,...,n, by X, and the
matrix with the elementg; (x;), i =1,... ,n, j=1,... ,m, by P, where{p; :
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j =1,...,m}is abasis ofl1,, andm its dimension. The analogue of expression
(2.10) is the matrix
X P
A:(PTO)' (5.3)

We now let the interpolant to the componentsio (f(x1), ..., f(x,))T be the
function

s =Y ko, x)+ ) _cip),
i—1 =

whose coefficients solve the system

A F
A(0)=(a)
It can be written as
s = va()TAT ((f ) . YED, (5.4)

wherev,,(y) is the vector

Un(3) == (0 (3, %1)s ., (Y, X0), P1OY)s - s PO (5.5)

The nonnegative function

Var(y) = o (3, y) — vaMT A v, (0)I, v e D, (5.6)

is assumed to be a measure of uncertainty. Notewhét;) is thei-th column of
A,i=1,...,n,S0we obtain

Var(x;) = |o(x;, %) — v ()T A7 0, ()]
= |o(x;, %) — v (xi) e
= 0.

Thus there is no uncertainty at the interpolation points, which is meaningful be-
cause we know the true function values there.

For the P-algorithmg is interpreted as the correlation function of a Gaussian
stochastic process. The use of a normal distribution, for example, @xey) :=
e~1¥=YI%/2 put other choices af are also considered in the literature. All of them
are positive definite, so we set= —1. The conditional mean and the conditional
variance can be expressed as ([21])

o(y,x1)
Mean(y) = (f(xl),... ,f(xn)>2_l : , (5.7)
o (y, xn)
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o(y, x1)
Var(y) = o(y,y) — (o(y, 5,0 (3,527 : ., (5.8)
o(y, xn)

which agree with (5.4) and (5.6).

For our method, given andm, it is suitable to define (x, y) := ¢ (Jlx — yl|)-
ThusX = @, and the coefficients of the interpolansolve (2.13). This gives the
form

5) = v () A7 < o ) , (5.9)

which is the same as the function (5.4).

We have seen already th@di/ i, | can be regarded as a variance in the case of
linear splines in one dimension. An expression for it containing the mataxd
the vectomw,, (x) can be derived in the following way. For apye D\ {x1, ... , x,},
consider the cardinal function (3.3). The second cardinality condition from (3.2)
implies

S i (y) " bi(y)
J(V)] ;_1 Mn(y)¢(||y xi D 12_1 () pi(y) (5.10)

The coefficients(y), u,(y) andb(y) solve the system (3.5). Moreover, the vector
(5.5) contains the first and the lastz elements of thén + 1)-th column ofA(y).
Thereforex (y) andb(y) also solve

Hn ()

A (Z((;; ) = —,U«n()’)vm()’),
which implies

1 <a(y)
wa(y) \ £(y)

Thus, replacing the termg (y) /. (y) andb;(y)/m.(y) in (5.10), we find

) = _A_lvm ()’)

=90 — vu (M A 0, (). (5.11)

Mn(y)

It follows from o (x,x) = ¢(0), x € D, that expression (5.6) is equivalent to
11/ 10 (Y-

Finally, we consider the selection rule for the next point. For the P-algorithm,
it has already been noted that the maximization of (5.1) is equivalent to the max-
imization of (5.2). For a given target valyg¢* define the functior/ : R? — R
as

V2

UM,V) = —.
MV = =

(5.12)
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Itis increasing inV and decreasing i/, if f* < M. Also, it satisfies the axioms
of rational search stated in Zilinskas [22]. Then, employing (5.4) and (5.6), both
methods choose the point that maximizes

U(s(y), \/W(y)), yeD.

6. Search Strategies and Practical Questions

Practical features of our method have received little attention in this paper. Several
questions arise concerning the choice of parameters in Algorithm 3.
1. What radial basis functiop should be chosen, and what polynomial degree
m?
2. What is a good strategy for the choice of the target vaf{jés
3. Given a target value, how should the minimizatiorgpin (3.7) (or the max-
imization of i, in (3.8)) be carried out? Should we approximate the global
optimum ofg, (or k,) or compute a (possibly non-global) local minimum?
The first problem has not been investigated thoroughly. Experiments using cubic
and thin plate splines on a few test functions suggest that one cannot say in general
that one of them is better than the other. Experiments have not been tried yet for
the other types.

The choice of target values is crucial for the performance of the method. The
interpretation of the two extremal cases has been noted in Section 3. Specifically,
the choicef,” = min,cp s,(y) means that we trust our model and assume that
the minimizer ofs,, is close to the global minimizer of. In the other case, namely
f.F = —o0o, wetry to find a point in a region that has not been explored at all. It may
be best to employ a mix between valuesfgfthat are suitable for convergence to
a local minimizer and values that provide points in previously unexplored regions
of the domain.

Research is going on for the third question. We prefer to maxirjzas this
function is defined everywhere af. It might seem strange that we consider com-
puting the global optimum di,, i.e. that a global optimization problem is replaced
by another one. However, unlikg &, can be evaluated quickly, and derivatives are
available as well. Also we know roughly where the local maxima,pfie. Thus
the maximization ofz, is much easier than the minimization 6f In addition, as
the problem (GOP) is very difficult under our assumptions, it would take too long
to compute a global minimizer accurately. Therefore, from a practical point of
view, we are interested in an approximate solution of (GOP). So it should suffice to
determine an approximation to the maximizer of (3.8). As far as the second option
in question 3 is concerned, we have to find a way to choose starting points or search
regions in order to ensure fast convergence, which is still an open problem.

Experiments show that large differences between function values can cause the
interpolant to oscillate very strongly. Thus its minimal value can be much below
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Table 1. Dixon-Szegd test functions and their dimension, the domain and the number of
local and global minima

Function Dimension No. of local No. of global Domain
minima minima
Branin 2 3 3 [-5, 10] x [0, 15]
Goldstein-Price 2 4 1 [—2, 2%
Hartman 3 3 4 1 [0, 13
Shekel 5 4 5 1 [0, 101
Shekel 7 4 7 1 [0, 101
Shekel 10 4 10 1 (0,101
Hartman 6 6 4 1 [0, 118

the least calculated function value. We have found in numerical computations that
these inefficiencies are reduced if large function values are replaced by the median
of all available function values.

Some experiments were performed using the test functions proposed by Dixon
and Szego [2]. Table 1 gives the name of each function, the dimension, the domain
and the number of local and global minima in that domain.

In all the cases, we use thin plate splines as interpolants, where the additional
polynomials are linear. The initial points are chosen to be the corners of the domain.
It seems that a different choice gives similar results, but this has not been studied
yet. Also, for the computation of the interpolasjtand the target value, function
values that are larger than the median of all available values are replaced by the
median.

The maximization of (3.8) is carried out using a version of the tunneling method
(Levy and Montalvo [13]). When this method is at a local maximum, searches
are started in each coordinate direction, using an auxiliary function. If all these
searches fail to provide a point with a larger function value, the algorithm is stopped.
The complexity of function evaluations as well as the number of local maxima of
(3.8) increase with, the number of iterations. This is a problem, wheis large,
but in our experiments the time needed to solve the auxiliary problem normally
was only a few seconds.

Finally, the target valueg,* are determined as follows. The idea is to perform
cycles of N + 1 iterations for som&/ € IN, where each cycle employs a range of
target values, starting with a low one (global search), and ending with a valffe of
that is close to mis, (y) (local search). Then we go back to a global search, starting
the cycle again. The results that we report have been obtained using the following
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Table 2. Number of function evaluations for our method in comparison to DIRECT, DE,
EGO and MCS with two different stopping criteria

Test function Error < 1% Error<0.01%

RBF DIRECT DE EGO RBF DIRECT MCS

Branin 44 63 1190 28 64 195 41
Goldstein—Price 63 101 1018 32 76 191 81
Hartman 3 43 83 476 35 158 199 79
Shekel 5 76 103 6400 - 100 155 83
Shekel 7 76 97 6194 - 125 145 129
Shekel 10 51 97 6251 - 112 145 103
Hartman 6 112 213 7220 121 160 571 111

strategy. We choose the cycle length= 5. Let the number of initial points be
no, let the cycle start at = 7, and let the function values be ordered, ifé€x;) <

. < fx). If f(x) = f(x,), the interpolant is a constant function, because
we pickm > 0, so the maximization of (3.8) is equivalent to the maximization
of |1/, if ff < f(x1). In this case, we choosg* = —oo. Otherwise, for
n<n<n+N-1, weset

. . N —n+i\? .
fn = gr;lir)lsn(y) - (T) <f(xo(n)) - Qgsn(y)) s

n —np

whereo (7)) = n ando (n) = o(n—l)—t qa+1l<n<n+N-1. When

n =n+ N we setf, = mins,(y). However, we have to be careful here since this
choice is only admissible if; is not one of the global minimizers of. Thus, we

do not accept this choice, (ff (x1) — mins,(y)) < 1074| f (x1)|, providedf (x1) is
nonzero, or iff (x;) — Minyep 5,(y) < 1074, if f(x1) = 0. In these cases, we set
£ = mins,(y) — 1072| f(x1)| and £ = mins,(y) — 102, respectively, to try to
obtain a yet lower function value.

The algorithm is stopped when the relative erf@gest — f*|/|f*| becomes
smaller than a fixed, where f* is the global optimum anghes; the current best
function value. The optimal values of all test functions in Table 1 are nonzero, so
this stopping criterion is valid.

Table 2 reports the number of function evaluations needed to achieve a relative
error less than 1% and 0.01%. RBF denotes our method using the target value
strategy described above. DIRECT (Jones, Perttunen and Stuckman [9]) and MCS
(Multilevel Coordinate Search, Huyer and Neumaier [5]) are recent methods that,
according to the results presented in those papers, are more efficient than most of
their competitors on the Dixon-Szeg6 testbed. DE (Differential Evolution, Storn
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and Price [18]) is an evolutionary method that operates only at the global level,
which explains the large number of function evaluations. EGO (Efficient Global
Optimization, Jones, Schonlau and Welch [10]) is the latest method known to us.
Unfortunately, no tests are reported on the Shekel test functions. All the results
from these methods are quoted from the papers mentioned above. For the DIRECT
method, numbers of evaluations for both the 1% and tB&% stopping criterion

are reported. For DE and EGO only results for the 1% criterion are available,
whereas MCS only uses the0Q% criterion. It should be noted that MCS uses

a local search method at some stages of the algorithm, and in all the cases of Table
2 the first local minimum found is the global one.

7. Conclusions

Our global optimization method converges to the global minimizer of an arbitrary
continuous functiory, if we choose the sequence of target values carefully.itf
sufficiently smooth, there is even a suitable condition on this sequence that can be
checked by the algorithm. However, it is unsatisfactory that the multiquadric and
Gaussian cases are excluded from the statement of Theorem 7. It is believed that
the convergence result is true also in these cases, although they are not covered by
the analysis in [3].

Table 2 shows that the method is able to compete with other global optimization
methods on the set of the Dixon-Szegd test functions. The test functions in this
testbed, however, are of relatively low dimension, and the number of local and
global minima is very small. Therefore, it is necessary to test the method on other
sets of test functions and of course on real-world applications.

The maximization of the utility functiork, is still an unresolved problem.

The tunneling method that has been used for the experiments requires too many
parameters whose choice is not obvious. Jones, Schonlau and Welch [10] describe
a branch-and-bound algorithm to solve an auxiliary problem in the EGO method.
It is interesting to investigate how this approach can be used for our method. As
mentioned above, another option is to carry out local searches from one or several
starting points. The challenge here is to find suitable starting points that yield points
with large values ofz,,.

The relation to the P-algorithm is very interesting. It is hoped that the connec-
tions can be exploited further. In particular, the choice of the target values and the
determination of the point of highest utility are common problems. Solutions to
these problems may be developed that are useful for both methods.

Appendix

The main convergence theorem, Theorem 7, is proved in this appendix. In order to
establish it, some lemmas are needed on the behaviour of the coefficients
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LEMMA 12. Let¢ be any of the radial basis functions in (2.2), and g and
m > mg be chosen as in Section 2. L&t C R? be compact, and ldtx,,),c be a
convergent sequence d with pairwise different elements. Further, tgt,),cwv be
a sequence i such thaty, # x,, n € IN, andlim,_., ||x, — y.|| = 0. Choose
k pointszi, ..., zx € D that satisfy condition (2.11). Assune,) converges to
x* € D\ {z1, ..., u). Foranyy € D\ {z1, ... , 2 yor1), l€tZ, be the cardinal
spline that interpolates the datas, 0), ..., (zx, 0), (y,+1, 0) and (y, 1), and let
fi.(y) be the coefficient of, that satisfies—1)"0*f1, (y) = (£,, £,). Then, for
0 < p < linthe linear case an@® < p < 2in the other cases,

’1Ii_>moo(_1)m0+l||yn+l - xn—i-l”p ﬁn (xn+l) = 00. (Al)

Proof. Let A, and A, (x,,1) be the matrices of the form (2.10) for the in-

terpOIatlon pOIntszlv «ov 5 Zks Yntl and 21+ o+ s ks Yn+ls Xn+1s respeCtlver For
sufficiently largen, neitherx, .1 nor y,,; is in the set{z4, ... , zx}. Thus,A, and
A, (x,41) are nonsingular. Cramer’s Rule implies
detA,
~n Xn - T, - A.2
M (Xn11) detA, Corr1) ( )

Also, let A* be the matrix of the form (2.10) for the interpolation poigis. . . , zx,
x*. By the continuity of the determinant,

lim detA, = detA* # 0. (A.3)

n—oo

In order to investigate the behaviour [Df, 1 — x,.1]| 77 detA, (x,41), we let
T

v = (@Uy =zl .. ¢y =) . veD,

and
p(y) = (pl(y), e ,pna(y))T,

wherem = dimIl,, and p,, ..., p; are as in Section 2. Thus,(x,.1) is the
matrix

y e D,

o V(Yn+1) V(Xn+1) P
V(Yug1)” #(0) O (1Yns1 — Xng2l) POurD)”
V(41" O UlYnt1 — Xnsal) #(0) p ()’

P’ P(ns1) P(Xns1) 0

where® and P correspond to (2.3) and (2.9), respectively, if weset k and
{x1,...,x,} ={z1, ..., zx}. Now the rows

(v ¢(0) G UYnr1 = Xt pOus)” )
and ( v(xD)” @UYas1 — Xnsal) ¢(0) pP(ur)” )

, (A.4)
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have the same limit as — oo, so det4,, (x, 1) tends to zero. Hence the properties
(A.2) and (A.3) prove the assertion (A.1) fpr= 0.

For p > 0, note that the value of the determinant of the matrix (A.4) does not
change if we replace the second row by the difference between the second and third
rows, and subsequently replace the second column by the difference between the
second and third columns. Then the new second column of,de}, 1) becomes

V(Yn+1) — V(Xn1)
2[¢(0) — dlyn+1—%n+1lD]
¢ yn+1—Xn+11) —¢(0)
PYn+1) — P(Xnt1)

and the new second row is its transpose. We have to divide the determinant by
lVpe1 — x,411”, SO we divide the second row and then the second column by
| Vpt1—Xns1l1?/2. Thus all components of (A.5) are multiplied By, 1 —x,41]1°/2,
except the second one which is multiplied |by,+1 — x,+1]|°. Then the following
remarks are helpful.

For each choice op andj =1, ... , k, the functiong(||lz; — x||), x € D, is
Lipschitz continuous, so the component6§,.1) — v(x,.1) satisfy

(A.5)

lpUlzj — ynal) — @ (llzj — XpsalD] < CONSYXpt1 — Yosall, J=1,... .k

Thus forp < 2 we have

. 1
im [0z = w2l = @01z = xaaD | =0 (AH)

n—>00 ”yn—i-l - -xn+l||p/2
Similarly, for p < 2, the components gi(y,+1) — p(x,41) have the property
, 1
im (110 = pinsn)] = 0 (A7)

n—>00 || ypq1 — xn-‘rl”'o/2

Finally, we deduce

. 1
im ——————[p(ly1 — xsal) — O | =0, (A8)

n—>00 || ypq1 — Xpyall?

for p < 1in the linear case, fop < 2 in the thin plate spline, multiquadric and
Gaussian cases, and for< 3 in the cubic case. This is clear in the linear, thin
plate spline and cubic cases. In the other two cases it follows from second order
Taylor expansion o, because’(0) = 0 and ¢ is bounded ofR .. Thus (A.5) —

(A.8) provide

im [[yp+1 — Xuqal 7" detA, (xu41) =0,
n—00

for the given values op. Hence (A.2) and (A.3) imply (A.1). a

Now we obtain
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LEMMA 13. Let¢, mg andm be chosen as in Lemma 12, and (&), be the
sequence generated by Algorithm 3. Furtherdet p < 1in the linear case and
0 < p < 2inthe other cases. Then, for every convergent subsequenog. of
('xl‘l)v

lim (—1)m°+lA,€ /ank—l(-xnk) = 00,

k— o0 k
wherep, (.) is defined in Section 3 anti,,, is expression (4.1) fot = n;.

Proof. Forn > 2, definej, to be the natural number that minimizes||x, —

x;ll, j <n,s0A, = |lx, — xj,|l. Further, let(y,),.n be the sequence

) x2, n=1,
Yn = Xj, n=2.

Let (x,,)rev be a subsequence 0f,),c, that converges to*, say. Convergence
and the choice ofy, ), iIMply liMi— o [1x5, — Yu, Il = 0.

The initial step of Algorithm 3 provides a finite number of points that satisfy
(2.11), so the initial interpolation matrix (2.10) is nonsingular. If one of these points
is x*, we pickx,, in a neighbourhood of* so that the interpolation matrix to
xn,, and the other initial points is also nonsingular. Therefore there exist points
X1, ..., % in (x,).ew Such that their interpolation matrix is nonsingular, aridZ
{X1, ..., %}

For sufficiently largec € IV, such thaty,, & {x1, ..., %}, and foranyy € D \

{x1, ..., xp—1}, We Ieték(y, .) be the radial function that interpolatég, 0), ... ,
(%1, 0), (yu,» 0) @and(y, 1), and we let,,, _1(y, .) be the interpolant tox,, 0), . .. ,
(xn,—1,0) and (y, 1). Becauset,,_1(y, .) interpolates(y,,,0) and (x;,0), i =
1,...,1, for sufficiently largek, (3.6) and Theorem 1 imply the inequality

(=" (v) = ((y, ), iy, )
< -1y, ), L1, ) = (D)™, 1 (y)

for the coefficientgi, and i, —1.
Now we apply Lemma 12 in the case when, . .. , z;} is the sef{xy, ... , &}
andn = n; — 1. It follows that

(A.9)

lim (=D)AL () = M (=1, — yu 1 e () = 00,

with the choice ofo stated in Lemma 12. Thus, setting= x,, in (A.9), we obtain

that (—1)"0** AL 1., —1(x,,) tends to infinity agk — oco. O
Finally we show, using Proposition 6, that the coefficignigy) are uniformly

bounded, ify is bounded away from the points that are generated by the algorithm.

LEMMA 14. Let¢(r) = r, ¢(r) = r?log r or ¢(r) = r3. Further, choose the
integerm such thatd < m < d in the linear casel < m < d + 1in the thin plate
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spline case and < m < d + 2in the cubic case. Letx,),.cwy be the sequence
generated by Algorithm 3, and let be the number of points chosen in the initial
step. Assume that there exigt € D and a neighbourhoodV; := {x € R? :

llx — yoll < 8}, 8 > 0, that does not contain any point of the sequence. Then there
existsK > 0, that depends only om and§, such that

(=", (yo) < K Yn > no.

Proof. For anyn > ng, let ¢, be the radial function that is defined By(x;) =
0,i=1,...,n,and¢,(yo) = 1. There exists a compactly supported infinitely dif-
ferentiable functionF that takes the value 1 a§ and 0 onR“ \ N;. It follows from
Proposition 6 that” € N ,,. £, interpolatesF at x4, ... , x, andyo. Therefore,
there is a positive numbe¥, depending oryy, ands, such that

(=1)"* 0, (yo) = (€n, £,) < K, 1> no. O
Now we are ready to prove Theorem 7.

Proof of Theorem 7Assume there isy € D and an open neighbourhodd =
{x e R?: ||x — ol < 8}, 8 > 0, that does not contain an interpolation point. The
iteration step of Algorithm 3 gives

& (Xns1) < gu(yo), n = no,

whereng is the number of points chosen in the initial step of the algorithm.
By assumption (4.2), there is a subsequetgg,c Of the natural numbers
such that

mins, 1) = fr1 > TAlsnalle 20, ke N, (A.10)

with ¢ > 0, A,,_1 being the expression (4.1) far = n;, —1,0< p < 1in
the linear and 0< p < 2 in the thin plate spline and cubic cases. The sequence
(x4, ke IS @ SEQUENCE in a compact set, thus it contains a convergent subsequence.
Therefore, without loss of generality, we assume that). v itself converges.

Forallk € IN, x,, is the minimizer ofg,, _1(x). Thus, iffn*k_l > —00,

(_ 1)m0+1:l’Lnk —l(xnk ) [Snk—l(xnk) - ,:;c_]_]z

(A.11)
< (_1)m0+1:unk—l(y0)[snk—l(yO) - f:k_]_]z-
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If |lsy—1llc > O, this inequality, condition (A.10) and the definition {ffl
provide

Sme—1(Xn) — [ 21

2
%5 X _1)™mo+ ng— (yo) — ,:;{
( ])mo-i-l nk—l( nk) < (=10 llunk—l(yo) |:S 1(Yo f 1:|

- 2

m [$n—1(¥0) — Snp—1 (X1

< (=)™, 1(yo) | 1+ = —
Sne—1(Xn) — fo 1

- 2
1 sy —1(y0) — Su—1(xn)l
< (D", 1 (yo) | 14 - R

¢ TA;;I{Z ”snk—lnoo

p/2
TAp,

- 2
2
< (=)™, _1(y0) 1+—} .

If s —1lloc = 0, $p,—1(y) — A is a positive number independent yfthus
(A.11) gives

(=DM, () < (=™ e, 1(v0)

2
2
mo+1
< (_1) ot Mnk—l(yo) {1—'_ TAp/z} ’

Nk

for any positiver, as before. Remark 2 shows that this inequality holds also in the
casefy ; = —oo. Multiplying both sides byA;, yields

2 2
AL (=" (6 < (=D M, 1 (y0) [Aﬁ{z + ;} : (A.12)

By Lemma 13, the left-hand side of (A.12) tends to infinitykatends to infinity.
However, Lemma 14 states th@t 1)"o+1., (o) is bounded above by a constant
that does not depend an Thus the right-hand side of (A.12) is bounded by a con-
stant that is independent bfwhich contradicts (A.12). Therefore there is a point
in the sequence that is an elementofThis implies that in each neighbourhood of
an arbitraryyg € D there are infinitely many elements @f,),.c v, SO the sequence
is dense inD. O
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