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Abstract. We introduce a method that aims to find the global minimum of a continuous nonconvex
function on a compact subset ofRd . It is assumed that function evaluations are expensive and that
no additional information is available. Radial basis function interpolation is used to define a utility
function. The maximizer of this function is the next point where the objective function is evaluated.
We show that, for most types of radial basis functions that are considered in this paper, convergence
can be achieved without further assumptions on the objective function. Besides, it turns out that
our method is closely related to a statistical global optimization method, the P-algorithm. A general
framework for both methods is presented. Finally, a few numerical examples show that on the set
of Dixon-Szegö test functions our method yields favourable results in comparison to other global
optimization methods.
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1. Introduction

Global optimization has attracted a lot of attention in the last 20 years. In many
applications, the objective function is nonlinear and nonconvex. Often, the number
of local minima is large. Therefore standard nonlinear programming methods may
fail to locate the global minimum.

In the most general way, the Global Optimization Problem can be stated as

(GOP) findx∗ ∈ D such thatf (x∗) 6 f (x), x ∈ D,

whereD ⊂ Rd is compact, andf : D → R is a continuous function defined on
D . Under these assumptions, (GOP) is solvable, becausef attains its minimum on
D .

Numerous methods to solve (GOP) have been developed (see e.g. Horst and
Pardalos [4] and Törn and Žilinskas [19]). Stochastic methods like simulated an-
nealing and genetic algorithms which use only function values are very popular
among users, although their rate of convergence is usually rather slow. Determ-
inistic methods like Branch-and-Bound, however, assume that one can compute
a lower bound off on a subset ofD . This can be done, for example, when the
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Figure 1. The function whose graph is the solid line is to be minimized. The dots in (a)
indicate the points where the function values are known. The dotted line in (a) is the graph
of the response surface. Sampling the function at the global minimizer of this surface gives
the new response surface in (b). A better estimate of a local minimum has been found, but the
global minimum is missed.

Lipschitz constant onf is available. The further assumptions make these methods
very powerful, but often they are not satisfied or it is too expensive to provide the
necessary information.

For the method investigated in this paper, we have in mind problems when the
only information available is the possibility to evaluate the objective function, and
each evaluation is very expensive. This may mean that it takes several hours to
calculate a function value. For example, a function evaluation at a point may be
done by building an experiment, by running a long computer simulation or by
using a finite element method. Therefore, the duration of an optimization process
is dominated by the function evaluations. As it can take very long to compute a
global minimum in such a case, users often are satisfied when an adequate estimate
of the global minimum is obtained. Thus, our goal is to require as few function
evaluations as possible to find such an estimate.

Response surface methods have been developed to solve this kind of problem.
Given points and their function values, a response surface can be computed that
interpolates the objective function at these points. For many smooth objective func-
tions such a response surface can identify the region of a global minimum after only
a few function evaluations.

After having found a response surface, a naive idea would be to choose the
global minimizer of the surface and evaluate the objective function there. However,
if this process is iterated, the global minimum might be missed (see Figure 1). This
happens because one trusts the surface model without taking into account possible
errors.

To avoid this problem the decision on where to evaluate the objective function
next must be based on the response surface model and a measure of the error in this
model. If one knew the global minimum value, one could choose any pointx and
assume that it is a global minimizer. Then a response surface can be fitted through
this point and the existing points. Intuitively, if this surface is very ‘bumpy’, it is
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Figure 2. An example of the measure of ‘bumpiness’, where the dotted line indicates the
global minimum. The response surface in (a) is less ‘bumpy’ than the one in (b).

unreasonable to expect thatx is a global minimizer. So one would choose the next
point to be the one that yields the ‘least bumpy’ of all these response surfaces.
Normally, of course, the optimal value is not known. Then one can choose an
estimate instead of the true value and follow the idea above. An example of two
different levels of ‘bumpiness’ is given in Figure 2.

A general response surface technique has been proposed by Jones [8]. LetA
be a linear space of functions, and assume that, fors ∈ A, σ (s) is a measure
of the ‘bumpiness’ ofs. Now assume that we have calculatedx1, . . . , xn and the
function valuesf (x1), . . . , f (xn). A target valuef ∗ is chosen that can be regarded
as an estimate of the optimal value, but it might be very crude. For eachy 6∈
{x1, . . . , xn}, let sy ∈ A be defined by the interpolation conditions

sy(xi) = f (xi), i = 1, . . . , n,
(1.1)

sy(y) = f ∗.
The new pointxn+1 is chosen to be the value ofy that minimizesσ (sy), y 6∈
{x1, . . . , xn}.

Our method is based on this technique where we use radial basis functions
as interpolants. Their interpolation properties are very suitable. Specifically, the
uniqueness of an interpolant is achieved under very mild conditions on the location
of the interpolation points, and a measure of bumpiness is also available.

Close relations can be established between our method and one from statistical
global optimization, namely the P-algorithm (Žilinskas [22]). Although being de-
rived using a completely different approach, it is very similar to our method. One
special case of a P-algorithm, developed by Kushner [12], is even equivalent to a
special case of our radial basis function method.

Other global optimization methods based on radial basis functions have been
developed. Alotto et al. [1] use interpolation by multiquadrics to accelerate a sim-
ulated annealing method. Ishikawa et al. [6, 7] employ radial basis functions to
estimate the global minimizer and run an SQP algorithm to locate it.

The properties of radial basis functions that are necessary for the description
of our method are introduced in the following section. In particular, we address
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the question of interpolation and introduce a suitable measure of ‘bumpiness’. The
global optimization method is described in detail in Section 3. Convergence of the
method is the subject of Section 4. The proof of the main theorem can be found in
the Appendix. The relation between our method and the P-algorithm is addressed
in Section 5. The final section deals with search strategies, but a complete analysis
is beyond the scope of this paper.

2. Interpolation by Radial Basis Functions and a Measure of Bumpiness

The radial basis function interpolation problem is as follows. Letn pairwise differ-
ent pointsx1, . . . , xn ∈ Rd and dataf1, . . . , fn ∈ R be given, wheren andd are
any positive integers. We seek a functions of the form

s(x) =
n∑
i=1

λiφ(‖x − xi‖)+ p(x), x ∈ Rd, (2.1)

that interpolates the data(x1, f1), . . . , (xn, fn). The coefficientsλi, i = 1, . . . , n,
are real numbers, and the norm‖.‖ is the Euclidean norm inRd . p is from5m, the
space of polynomials of degree less than or equal tom, i.e. it can be expressed as a
linear combination of functionsxk1

1 . . . x
kd
d , x ∈ Rd, wherek1+ . . .+ kd 6 m. We

let5−1 := {0}. The following choices ofφ are considered:

φ(r) = r (linear),
φ(r) = r3 (cubic),
φ(r) = r2 log r (thin plate spline),
φ(r) = √

r2 + γ 2 (multiquadric),
φ(r) = e−γ r2

(Gaussian),

 r > 0, (2.2)

whereγ is a prescribed positive constant.
It would be obvious to setm = −1 so that (2.1) is a linear combination of the

basis functionsφ(‖. − xi‖), i = 1, . . . , n, only. However, the matrix8 ∈ Rn×n
that is defined by

(8)ij := φ(‖xi − xj‖), i, j = 1, . . . , n, (2.3)

might be singular. For example, ifφ(r) = r2 log r, n = d + 1 and the points
x1, . . . , xd+1 form a simplex where all the edges have length 1, then8 = 0. So
for m = −1 and nonzero data there is no interpolant (2.1). However, any data
f1, . . . , fd+1 can be interpolated by a linear polynomial. Thus the interpolant (2.1)
exists ifλi = 0, i = 1, . . . , n, and ifp is this interpolating polynomial. Further, the
general form (2.1) allows more freedom in defining a suitable measure of bumpi-
ness. In general, our task now is to find values ofm that guarantee existence and
uniqueness of an interpolant (2.1) and a measure of its bumpiness.

The key to this task is the concept of conditional definiteness. For eachφ from
(2.2),8 is conditionally positive or negative definite. Specifically, letVm ⊂ Rn be
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the linear space of allλ ∈ Rn that satisfy

n∑
i=1

λiq(xi) = 0 ∀ q ∈ 5m. (2.4)

Formally, we setV−1 := Rn. Obviously,Vm+1 ⊂ Vm for all m > −1. Powell [15]
shows that, in the cubic and thin plate spline cases

λT8λ > 0 ∀ λ ∈ V1 \ {0}, (2.5)

in the linear and multiquadric cases

λT8λ < 0 ∀ λ ∈ V0 \ {0}, (2.6)

and in the Gaussian case

λT8λ > 0 ∀ λ ∈ Rn \ {0}. (2.7)

We letm0 be 1 in the cubic and thin plate spline cases, 0 in the linear and multi-
quadric cases and−1 in the Gaussian case. Then the inequalities (2.5) – (2.7) can
be merged into

(−1)m0+1λT8λ > 0 ∀ λ ∈ Vm0 \ {0}. (2.8)

After choosingφ, we letm be an integer that is not less thanm0, andλ is confined
to Vm.

Let m̂ be the dimension of5m, let p1, . . . , pm̂ be a basis of this linear space,
and letP be the matrix

P :=
 p1(x1) · · · pm̂(x1)

...
...

p1(xn) · · · pm̂(xn)

 . (2.9)

ThenVm is the space of allλ ∈ Rn that satisfyPT λ = 0. Further, it can be shown
(see [15]) that the matrix

A =
(
8 P

PT 0

)
∈ R(n+m̂)×(n+m̂) (2.10)

is nonsingular if and only ifx1, . . . , xn satisfy

q ∈ 5m and q(xi) = 0, i = 1, . . . , n, H⇒ q ≡ 0. (2.11)

In the Gaussian case withm = −1,P and condition (2.11) are omitted. Therefore
the coefficients of the functions in (2.1) are defined uniquely by the system

s(xi) = fi, i = 1, . . . , n
n∑
i=1

λipj (xi) = 0, j = 1, . . . , m̂

 . (2.12)
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Let F be the vector whose entries are the data valuesf1, . . . , fn. Then the system
(2.12) becomes(

8 P

PT 0

)(
λ

c

)
=
(
F

0m̂

)
, (2.13)

whereλ = (λ1, . . . , λn)
T ∈ Rn, c ∈ Rm̂ and 0̂m is the zero inRm̂. The components

of c are the coefficients of the polynomialp with respect to the basisp1, . . . , pm̂.
The motivation for the measurement of the bumpiness of a radial basis function

interpolant can be developed from the theory of natural cubic splines in one dimen-
sion. They can be written in the form (2.1), whereφ(r) = r3, λ ∈ V1 andp ∈ 51.
It is well known (e.g. Powell [14]) that the interpolants that is defined by the
system (2.12) minimizesI (g) := ∫

R[g′′(x)]2dx among all functionsg : R → R
that satisfy the interpolation conditionsg(xi) = fi, i = 1, . . . , n, and for which
I (g) exists and is finite. ThereforeI (g) is a suitable measure of bumpiness. The
second derivatives′′ is piecewise linear and vanishes outside a bounded interval.
Thus one obtains by integration by parts

I (s) =
∫
R
[s′′(x)]2 dx = 12

n∑
i=1

λis(xi )

= 12
n∑
i=1

λi

 n∑
j=1

λj |xi − xj |3+ p(xi)
 = 12λT8λ,

where the last equation follows fromλ ∈ V1. This relation suggests that expression
(2.8) can provide a semi-inner product and a semi-norm for eachφ in (2.2) and
m > m0. Also, the semi-norm will be the measure of bumpiness of a radial basis
function (2.1). A semi-inner product〈., .〉 satisfies the same properties as an inner
product, except that〈s, s〉 = 0 need not implys = 0. Similarly, for a semi-norm
‖.‖, ‖s‖ = 0 does not implys = 0.

We choose any radial basis function from (2.2) andm > m0, and we define
Aφ,m to be the linear space of all functions of the form

N∑
i=1

λiφ(‖x − yi‖)+ p(x), x ∈ Rd,

whereN ∈ IN , y1, . . . , yN ∈ Rd , p ∈ 5m, andλ = (λ1, . . . , λN)
T satisfies (2.4)

for n = N . On this space, the semi-inner product and the semi-norm are defined as
follows. Lets andu be any functions inAφ,m, i.e.

s(x) =
N(s)∑
i=1

λiφ(‖x − yi‖)+ p(x) and u(x) =
N(u)∑
j=1

µjφ(‖x − zj‖)+ q(x).
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We let the semi-inner product be the expression

〈s, u〉 := (−1)m0+1
N(s)∑
i=1

λiu(yi). (2.14)

Clearly, it is bilinear. To show symmetry, we use

N(s)∑
i=1

λiq(yi) = 0 and
N(u)∑
j=1

µjp(zj) = 0,

to deduce

〈s, u〉 = (−1)m0+1
N(s)∑
i=1

λi

N(u)∑
j=1

µjφ(‖yi − zj‖)+ q(yi)


= (−1)m0+1
N(s)∑
i=1

N(u)∑
j=1

λiµjφ(‖yi − zj‖)

= (−1)m0+1
N(u)∑
j=1

µj

(
N(s)∑
i=1

λiφ(‖zj − yi‖)+ p(zj )
)

= (−1)m0+1
N(u)∑
j=1

µjs(zj ) = 〈u, s〉.

By (2.8),

〈s, s〉 = (−1)m0+1
N(s)∑
i=1

λis(yi) = (−1)m0+1
N(s)∑
i,j=1

λiλjφ(‖yi − yj‖) (2.15)

is strictly positive, ifλ ∈ Vm \ {0} andm > m0, i.e. s ∈ Aφ,m is not a polynomial
in 5m. Thus (2.14) is a semi-inner product onAφ,m that induces the semi-norm
〈s, s〉 with null space5m (for details see Powell [16] and Schaback [17]).

In analogy to the variational principle for cubic splines in one dimension, men-
tioned above, there is a theorem that states that the given interpolant is the solution
to a minimization problem.

THEOREM 1. (Schaback [17]).Letφ be any radial basis function from (2.2), and
let m be chosen such thatm > m0. Given are pointsx1,. . ., xn in Rd having the
property (2.11) and valuesf1, . . . , fn in R. Lets be the radial function of the form
(2.1) that solves the system (2.12). Thens minimizes the semi-norm〈g, g〉1/2 on the
set of functionsg ∈ Aφ,m that satisfy

g(xi) = fi, i = 1, . . . , n. (2.16)
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3. A Radial Basis Function Method

It will be shown how radial basis functions can be used in the general method of
Jones [8] to solve the problem (GOP) (cf. Powell [16]). As in Section 2, we pick
φ from (2.2) andm > m0. Letp1, . . . , pm̂ be a basis of5m, wherem̂ = dim5m.
Assume we have chosenx1, . . . , xn ∈ D that satisfy (2.11), and we know the
function valuesf (x1), . . . , f (xn). Let the function

sn(x) =
n∑
i=1

λiφ(‖x − xi‖)+ p(x), x ∈ Rd,

interpolate(x1, f (x1)), . . . , (xn, f (xn)). Our task is to determinexn+1. For a target
valuef ∗n and a pointy ∈ D \ {x1, . . . , xn} the radial basis functionsy that satisfies
(1.1) can be written as

sy(x) = sn(x)+ [f ∗n − sn(y)] `n(y, x), x ∈ Rd, (3.1)

where`n(y, x) is the radial basis function solution to the interpolation conditions

`n(y, xi) = 0, i = 1, . . . , n,

`n(y, y) = 1.
(3.2)

Thereforè n(y, .) can be expressed as

`n(y, x) =
n∑
i=1

αi(y)φ(‖x − xi‖)+ µn(y)φ(‖x − y‖)+
m̂∑
i=1

bi(y)pi(x),

x ∈ Rd.
(3.3)

As in equation (2.10), letA(y) be the matrix

A(y) :=
 8 u(y) P

u(y)T φ(0) π(y)T

P T π(y) 0m̂×m̂

 , (3.4)

whereu(y) andπ(y) are the vectors

u(y) := (φ(‖y − x1‖), . . . , φ(‖y − xn‖))T

and

π(y) := (p1(y), . . . , pm̂(y))
T ,

respectively. Then the coefficients of`n(y, .) are defined by the equations

A(y)

 α(y)

µn(y)

b(y)

 =
 0n

1
0m̂

 , (3.5)
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whereα(y) = (α1(y), . . . , αn(y))
T ∈ Rn, b(y) = (b1(y), . . . , bm̂(y))

T ∈ Rm̂,
µn(y) ∈ R, 0n and 0̂m denote the zero inRn andRm̂, respectively.

The square of the semi-norm〈sy, sy〉 of the new interpolant (3.1), as defined in
the previous section, has the value

〈sy, sy〉 = 〈sn, sn〉 + 2[f ∗n − sn(y)]〈sn, `n(y, .)〉
+[f ∗n − sn(y)]2 〈`n(y, .), `n(y, .)〉.

Equations (2.14) and (3.2) imply

〈sn, `n(y, .)〉 = (−1)m0+1
n∑
i=1

λi`n(y, xi) = 0,

and, using expressions (3.2) and (3.3), we find the expression

〈`n(y, .), `n(y, .)〉 = (−1)m0+1

[
n∑
i=1

αi(y)`n(y, xi)+ µn(y)`n(y, y)
]

= (−1)m0+1µn(y). (3.6)

Thus we deduce the formula

〈sy, sy〉 = 〈sn, sn〉 + (−1)m0+1µn(y) [f ∗n − sn(y)]2.
Further, we define the functiongn : D \ {x1, . . . , xn} → R as the difference

gn(y) := 〈sy, sy〉 − 〈sn, sn〉 = (−1)m0+1µn(y) [f ∗n − sn(y)]2,
which is nonnegative. Since〈sn, sn〉 is independent ofy, the required minimization
of 〈sy, sy〉 and the minimization ofgn(y) are equivalent.

The choice off ∗n determines the location ofxn+1. If

max
y∈D

sn(y) > f ∗n > min
y∈D sn(y),

thengn(y) = 0 can be achieved. However, if

f ∗n < min
y∈D sn(y),

thenxn+1 will be away from thexi, i = 1, . . . , n. In particular, forf ∗n → −∞,
we make the following deduction.

REMARK 2. Forf ∗n < miny∈D sn(y) let x(f ∗n ) be the minimizer ofgn, i.e.

(−1)m0+1µn(x(f
∗
n ))[sn(x(f ∗n ))− f ∗n ]2 6 (−1)m0+1µn(y)[sn(y)− f ∗n ]2

∀ y ∈ D \ {x1, . . . , xn}.
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This is equivalent to

(−1)m0+1µn(x(f
∗
n )) 6 (−1)m0+1µn(y)

[
1+ sn(y)− sn(x(f

∗
n ))

sn(x(f
∗
n ))− f ∗n

]2

.

As f ∗n →−∞, the boundedness ofsn onD implies

(−1)m0+1µn(x(−∞)) 6 (−1)m0+1µn(y) ∀ y ∈ D \ {x1, . . . , xn}.
Therefore, the choicef ∗n =−∞ requires the minimization of the function(−1)m0+1

µn(y). This process putsxn+1 in a large gap betweenxi, i = 1, . . . , n, a property
that is of fundamental importance to global optimization.

The following basic algorithm employs the given method.

ALGORITHM 3.

Initial step: Pickφ from (2.2) andm > m0.
Choose pointsx1, . . . , xn0 ∈ D that satisfy (2.11). Compute the radial func-
tion sn that minimizes〈s, s〉 onAφ,m, subject to the interpolation conditions

s(xi ) = f (xi), i = 1, . . . , n.

Iteration step: x1, . . . , xn are the points inD where the value off is known,
andsn minimizes〈s, s〉, subject tos(xi) = f (xi), i = 1, . . . , n.
Choose a target valuef ∗n ∈ [−∞,miny∈D sn(y)]. (The choicef ∗n = minsn(y)
is admissible only if none of thexi is a global minimizer ofsn).

Calculatexn+1, which is the value ofy that minimizes the function

gn(y) = (−1)m0+1µn(y)
[
sn(y)− f ∗n

]2
, y ∈ D \ {x1, . . . , xn}. (3.7)

Evaluatef at xn+1 and setn := n+ 1.
Stop, ifn is greater than a prescribednmax.

The functiongn is infinitely differentiable onD \ {x1, . . . , xn}, but is not defined
at the interpolation points. Iff ∗n = minsn(y), y ∈ D, and if sn(xi) > f ∗n , i =
1, . . . , n, then the global minimizers ofgn are the global minimizers ofsn. Thus
one can minimizesn, which is defined on the whole ofD , to obtainxn+1. If f ∗n <
minsn(y), however, thengn(x) tends to infinity asx tends toxi, i = 1, . . . , n. Let
hn : D → R be defined as

hn(y) :=


1

gn(y)
, y 6∈ {x1, . . . , xn}

0, y = xi, i = 1, . . . , n

. (3.8)

The maximization ofhn onD is equivalent to the minimization ofgn. Further,hn is
infinitely differentiable onD \{x1, . . . , xn}. It can also be shown, using the system
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(3.5), that it is inC(D) in the linear case, inC1(D) in the thin plate spline case, in
C2(D) in the cubic case, and inC∞(D) in the multiquadric and Gaussian cases.

Under certain conditions onf and the valuesf ∗n , n→∞, it can be proved that
a subsequence of the generated points(xn)n∈IN converges to a global minimum.
This is the subject of the following section.

4. Convergence of the Method

Our aim is to prove convergence of the method for any continuous functionf . A
theorem by Törn and Zilinskas [19] tells us that the sequence that is generated by
Algorithm 3 should be dense. Applied to our method, it states

THEOREM 4. The algorithm converges for every continuous functionf if and
only if it generates a sequence of points that is dense inD .

So our task is to establish the density of the sequence of generated points.
The convergence result does not allow a free choice of the target valuesf ∗n . Fig-

ure 1 shows that the global minimum might be missed, iff ∗n is set to miny∈D sn(y)
on each iteration, provided this choice is admissible. Therefore, we have to assume
that enough of the numbers minsn(y) − f ∗n are sufficiently large. Specifically, let
τ > 0 and ρ> 0 be constants, where additionallyρ < 1 in the linear case and
ρ < 2 in the thin plate spline and cubic cases, and define

1n := min
16i6n−1

‖xn − xi‖. (4.1)

Then the condition

min
y∈D sn(y)− f

∗
n > τ1ρ/2

n ‖sn‖∞, (4.2)

for infinitely manyn ∈ IN , will lead to the required result. Here‖.‖∞ denotes the
maximum norm of a function onD , defined by

‖g‖∞ := max
x∈D
|g(x)|, g ∈ C(D).

We note that the norms‖sn‖∞ may diverge asn→∞.
Unfortunately, the choice ofφ andm is restricted. In the proof of Theorem 7 we

need the result that, for anyy ∈ D and any neighbourhoodU of y, (−1)m0+1µn(y)

can be bounded above by a number that does not depend onn, if none of the points
x1, . . . , xn is in U . This condition is achieved, if there is a function that takes the
value 1 aty, that is identically zero outsideU , and that is in the function space
Nφ,m(Rd) as defined below.

DEFINITION 5. Let φ from (2.2) andm > m0 be given. A continuous function
F : D → R, D ⊂ Rd , belongs to the function spaceNφ,m(D), if there exists a
positive constantC such that, for any choice of interpolation pointsx1, . . . , xn ∈
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D for which (2.11) holds, the interpolantsn ∈ Aφ,m to F at these points has the
property

〈sn, sn〉 6 C.
The characterization ofNφ,m(D) is rather abstract. In the linear, cubic and

thin plate spline cases, the following proposition that is taken from Gutmann [3]
provides a useful criterion to check whether it is satisfied. In the multiquadric and
Gaussian cases, however, no such criterion is known.

PROPOSITION 6. Let φ(r) = r, φ(r) = r2 logr or φ(r) = r3. Further, let
κ = 1 in the linear case,κ = 2 in the thin plate spline case andκ = 3 in the
cubic case, and choose the integerm such that0 6 m 6 d in the linear case,
1 6 m 6 d + 1 in the thin plate spline case and1 6 m 6 d + 2 in the cubic
case. Defineν := (d + κ)/2 if d + κ is even, andν := (d + κ + 1)/2 otherwise. If
F ∈ Cν(Rd) has bounded support, thenF ∈ Nφ,m(Rd).

Global convergence will be established only for the cases covered by this pro-
position. It remains an open problem whether a similar property is achieved in other
cases. Thus we have the following theorem.

THEOREM 7. Let φ(r) = r, φ(r) = r2 log r or φ(r) = r3. Further, choose
the integerm such that0 6 m 6 d in the linear case,1 6 m 6 d + 1 in the
thin plate spline case and1 6 m 6 d + 2 in the cubic case. Let(xn)n∈IN be the
sequence generated by Algorithm 3, andsn be the radial function that interpolates
(xi, f (xi)), i = 1, . . . , n. Assume that, for infinitely manyn ∈ IN , the choice of
f ∗n satisfies (4.2). Then the sequence(xn) is dense inD .

The proof of Theorem 7 is given in the Appendix.
A particular convergence result follows immediately from Theorems 4 and 7,

because the right hand side of (4.2) is some real number.

COROLLARY 8. Let the assumptions of Theorem 7 onφ andm hold. Further, let
f be continuous, and, for infinitely manyn ∈ IN , let f ∗n = −∞. Then the method
converges.

An interesting question is to find conditions onf such that the maximum norm
of an interpolant is uniformly bounded. If they hold, then the right-hand side of
(4.2) can be replaced byτ1ρ/2

n , so this constraint onf ∗n can be checked easily. We
consider the special case of linear splines in one dimension, whend = 1,φ(r) = r
andm = 0. For arbitrary pointsx1, . . . , xn, the piecewise linear interpolantsn
attains its maximum and minimum values at interpolation points. Thus‖sn‖∞ is
bounded by‖f ‖∞, a number that does not depend on the interpolation points.
Therefore in this case the term‖sn‖∞ may be dropped from (4.2).

For other radial basis functions and other dimensions this simplification may
fail. It is shown in the next lemma, however, that the uniform boundedness of
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the semi-norm of an interpolant is sufficient for the uniform boundedness of the
maximum norm. Thus, the second convergence result applies to functionsf in
Nφ,m(D).

LEMMA 9. Let f be inNφ,m(D). Further, let(xn)n∈IN be a sequence inD with
pairwise different elements, such that (2.11) holds forn = n0. For n > n0, de-
note the radial basis function interpolant tof at x1, . . . , xn by sn. Then‖sn‖∞ is
uniformly bounded by a number that only depends onx1, . . . , xn0.

Proof. We fix n, and we lety be any point ofD \ {x1, . . . , xn}. Let s̃n be
the radial function that interpolates(y, f (y)) and (xi, f (xi)), i = 1, . . . , n. By
analogy with Equation (3.1), it can be written as

s̃n(x) = sn(x)+ [f (y)− sn(y)]`n(y, x), x ∈ Rd,
where`n(y, .) is still the cardinal function that interpolates(xi,0), i = 1, . . . , n,
and(y,1). Thus, as shown in Section 3,

〈s̃n, s̃n〉 = 〈sn, sn〉 +
[
f (y)− sn(y)

]2
(−1)m0+1µn(y),

which gives the equation[
f (y)− sn(y)

]2 = 〈s̃n, s̃n〉 − 〈sn, sn〉
(−1)m0+1µn(y)

, (4.3)

the value of(−1)m0+1µn(y) being strictly positive.
Next we show that(−1)m0+1µn(y) is bounded away from zero. Let`n0(y, .)

be the cardinal function that interpolates(x1,0), . . . , (xn0,0) and(y,1). Then the
semi-norm properties of〈., .〉 and Theorem 1 imply

0< (−1)m0+1µn0(y) = 〈`n0(y, .), `n0(y, .)〉
6 〈`n(y, .), `n(y, .)〉 = (−1)m0+1µn(y).

Forn = n0, letA andA(y) be the matrices (2.10) and (3.4), respectively. By using
Cramer’s Rule to solve (3.5), we find

µn0(y) =
detA

detA(y)
.

Now detA is a nonzero constant, and detA(y) is bounded onD . It follows that
(−1)m0+1µn0(y) is bounded away from zero. Therefore there exists a constantα >

0 such that

(−1)m0+1µn(y) > α ∀ y ∈ D \ {x1, . . . , xn0}, n > n0. (4.4)

As f ∈ Nφ,m(D), 〈s̃n, s̃n〉 is bounded above by a positive constantC. Further,
〈sn, sn〉 is nonnegative. It follows from (4.3) and (4.4) that

|f (y)− sn(y)| 6
√
C

α
, y ∈ D \ {x1, . . . , xn}.



214 H.-M. GUTMANN

Further, becausef is bounded onD , we obtain

|sn(y)| 6
√
C

α
+ ‖f ‖∞.

Note that the right-hand side is independent ofn andy, as required. Alternatively,
if y ∈ {x1, . . . , xn}, we have

|sn(y)| = |f (y)| 6 ‖f ‖∞,
which completes the proof. 2

Next, by applying Proposition 6, we obtain a criterion that ensures thatf is in
Nφ,m(D).

PROPOSITION 10.Let φ, m and ν be defined as in Proposition 6, and letf ∈
Cν(D), whereD ⊂ Rd is compact. Thenf ∈ Nφ,m(D).

Proof. By Whitney’s theorem ([20]),f can be extended to a functionF ∈
Cν(Rd) that is equal tof on D . Now D is contained in a closed ball of radius
δ, say, and there is an infinitely differentiable functiong with g(x) = 1, ‖x‖ 6 δ,
andg(x) = 0, ‖x‖ > 2δ. ThusF · g is in Cν(Rd), and by Proposition 6 it is in
Nφ,m(Rd). SinceF · g is equal tof on D , it follows from the definition of the
semi-norm thatf ∈ Nφ,m(D). 2
We complete this section by combining Theorem 7, Lemma 9 and Proposition 10.

COROLLARY 11. Let the assumptions of Theorem 7 onφ andm hold. Letν be
as in Proposition 6, and letf ∈ Cν(D). Further, assume that, for infinitely many
n ∈ IN , f ∗n has the property

min
y∈D sn(y)− f

∗
n > τ1ρ/2

n ,

whereτ > 0 is a constant, and where1n and ρ are as in the beginning of this
section. Then the method converges.

5. Relations to Statistical Global Optimization

In this section we consider the similarities between the given radial basis function
method and the P-algorithm. The idea of that method is proposed by Kushner [11,
12] for one-dimensional problems. Here the objective function is regarded as a
realization of a Brownian motion stochastic process. If real numbersx1<. . .<xn
are given, and their function valuesf (x1), . . . , f (xn) have been calculated, the
model yields, for eachx in the feasible set, a mean value Mean(x) and a variance
Var(x). Mean(x) serves as a prediction of the true function value atx, while Var(x)
is a measure of uncertainty. It turns out that Mean is the piecewise linear interpolant
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of the given data. The variance is piecewise quadratic on[x1, xn], nonnegative and
takes the value zero atx1, . . . , xn. For a real numberx, let Fx be the normally
distributed random variableFx with mean Mean(x) and variance Var(x). Now a
nonnegativeεn is chosen, and the next pointxn+1 will be the one that maximizes
the utility function

P

(
Fx 6 min

i=1,... ,n
f (xi)− εn

)
, x ∈ D, (5.1)

whereP denotes probability. One can show that maximizing (5.1) is equivalent to
maximizing

Var(x)

[Mean(x)−min{f (x1), . . . , f (xn)} + εn]2 , x ∈ D . (5.2)

Compare our method in one dimension with the choice of linear splines, i.e.φ(r) =
r andm = 0, and with the target values

f ∗n = min{f (x1), . . . , f (xn)} − εn.
In this case, the interpolantsn is identical to Mean. Further, except for a constant
factor,

Var(x) = − 1

µn(x)
.

Therefore, Kushner’s method and our method using linear splines are equivalent.
Žilinskas [21, 22] extends this approach to Gaussian random processes in sev-

eral dimensions. He uses the selection rule (5.1) and introduces the name ‘P-
algorithm’. In addition, he gives an axiomatic description of the terms involved
in (5.1), namely the mean value function, the variance function and the utility
function. We relate these results to our method.

Consider a symmetric functionσ : Rd × Rd → R, (x, z) 7→ σ (x, z), and
assume thatσ is conditionally positive or negative definite of orderm. This means,
there existsα ∈ {0,1} such that, givenn different pointsx1, . . . , xn ∈ Rd and
multipliersλ1, . . . , λn ∈ R, we have

(−1)α
n∑

i,j=1

λiλjσ (xi, xj ) > 0,

if the λi, i = 1, . . . , n, are not all zero and satisfy

n∑
i=1

λip(xi) = 0, p ∈ 5m.

Denote the matrix with the elementsσ (xi, xj ), i, j = 1, . . . , n, by 6, and the
matrix with the elementspj (xi), i = 1, . . . , n, j = 1, . . . , m̂, byP , where{pj :
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j = 1, . . . , m̂} is a basis of5m andm̂ its dimension. The analogue of expression
(2.10) is the matrix

A =
(
6 P

PT 0

)
. (5.3)

We now let the interpolant to the components ofF = (f (x1), . . . , f (xn))
T be the

function

s(y) =
n∑
i=1

λiσ (y, xi)+
m̂∑
j=1

cjpj (y),

whose coefficients solve the system

A

(
λ

c

)
=
(
F

0m̂

)
,

It can be written as

s(y) = vm(y)T A−1

(
F

0m̂

)
, y ∈ D, (5.4)

wherevm(y) is the vector

vm(y) := (σ (y, x1), . . . , σ (y, xn), p1(y), . . . , pm̂(y))
T . (5.5)

The nonnegative function

Var(y) = |σ (y, y)− vm(y)T A−1vm(y)|, y ∈ D, (5.6)

is assumed to be a measure of uncertainty. Note thatvm(xi) is thei-th column of
A, i = 1, . . . , n, so we obtain

Var(xi) = |σ (xi, xi)− vm(xi)T A−1vm(xi)|
= |σ (xi, xi)− vm(xi)T ei |
= 0.

Thus there is no uncertainty at the interpolation points, which is meaningful be-
cause we know the true function values there.

For the P-algorithm,σ is interpreted as the correlation function of a Gaussian
stochastic process. The use of a normal distribution, for example, givesσ (x, y) :=
e−‖x−y‖2/2, but other choices ofσ are also considered in the literature. All of them
are positive definite, so we setm = −1. The conditional mean and the conditional
variance can be expressed as ([21])

Mean(y) =
(
f (x1), . . . , f (xn)

)
6−1

 σ (y, x1)
...

σ (y, xn)

 , (5.7)
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Var(y) = σ (y, y) −
(
σ (y, x1), . . . , σ (y, xn)

)
6−1

 σ (y, x1)
...

σ (y, xn)

 , (5.8)

which agree with (5.4) and (5.6).
For our method, givenφ andm, it is suitable to defineσ (x, y) := φ(‖x − y‖).

Thus6 = 8, and the coefficients of the interpolants solve (2.13). This gives the
form

s(y) = vm(y)T A−1

(
F

0

)
, (5.9)

which is the same as the function (5.4).
We have seen already that|1/µn| can be regarded as a variance in the case of

linear splines in one dimension. An expression for it containing the matrixA and
the vectorvm(x) can be derived in the following way. For anyy ∈ D\{x1, . . . , xn},
consider the cardinal function (3.3). The second cardinality condition from (3.2)
implies

1

µn(y)
= φ(0) +

n∑
i=1

αi(y)

µn(y)
φ(‖y − xi‖)+

m̂∑
j=1

bj (y)

µn(y)
pj (y). (5.10)

The coefficientsα(y), µn(y) andb(y) solve the system (3.5). Moreover, the vector
(5.5) contains the firstn and the last̂m elements of the(n+ 1)-th column ofA(y).
Thereforeα(y) andb(y) also solve

A

(
α(y)

b(y)

)
= −µn(y)vm(y),

which implies

1

µn(y)

(
α(y)

b(y)

)
= −A−1vm(y).

Thus, replacing the termsαi(y)/µn(y) andbj (y)/µn(y) in (5.10), we find

1

µn(y)
= φ(0) − vm(y)T A−1vm(y). (5.11)

It follows from σ (x, x) = φ(0), x ∈ D , that expression (5.6) is equivalent to
|1/µn(y)|.

Finally, we consider the selection rule for the next point. For the P-algorithm,
it has already been noted that the maximization of (5.1) is equivalent to the max-
imization of (5.2). For a given target valuef ∗ define the functionU : R2 → R
as

U(M,V ) := V 2

(M − f ∗)2 . (5.12)
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It is increasing inV and decreasing inM, if f ∗ 6 M. Also, it satisfies the axioms
of rational search stated in Žilinskas [22]. Then, employing (5.4) and (5.6), both
methods choose the point that maximizes

U
(
s(y),

√
Var(y)

)
, y ∈ D .

6. Search Strategies and Practical Questions

Practical features of our method have received little attention in this paper. Several
questions arise concerning the choice of parameters in Algorithm 3.
1. What radial basis functionφ should be chosen, and what polynomial degree
m?

2. What is a good strategy for the choice of the target valuesf ∗n ?
3. Given a target value, how should the minimization ofgn in (3.7) (or the max-

imization of hn in (3.8)) be carried out? Should we approximate the global
optimum ofgn (or hn) or compute a (possibly non-global) local minimum?

The first problem has not been investigated thoroughly. Experiments using cubic
and thin plate splines on a few test functions suggest that one cannot say in general
that one of them is better than the other. Experiments have not been tried yet for
the other types.

The choice of target values is crucial for the performance of the method. The
interpretation of the two extremal cases has been noted in Section 3. Specifically,
the choicef ∗n = miny∈D sn(y) means that we trust our model and assume that
the minimizer ofsn is close to the global minimizer off . In the other case, namely
f ∗n = −∞, we try to find a point in a region that has not been explored at all. It may
be best to employ a mix between values off ∗n that are suitable for convergence to
a local minimizer and values that provide points in previously unexplored regions
of the domain.

Research is going on for the third question. We prefer to maximizehn, as this
function is defined everywhere onD . It might seem strange that we consider com-
puting the global optimum ofhn, i.e. that a global optimization problem is replaced
by another one. However, unlikef , hn can be evaluated quickly, and derivatives are
available as well. Also we know roughly where the local maxima ofhn lie. Thus
the maximization ofhn is much easier than the minimization off . In addition, as
the problem (GOP) is very difficult under our assumptions, it would take too long
to compute a global minimizer accurately. Therefore, from a practical point of
view, we are interested in an approximate solution of (GOP). So it should suffice to
determine an approximation to the maximizer of (3.8). As far as the second option
in question 3 is concerned, we have to find a way to choose starting points or search
regions in order to ensure fast convergence, which is still an open problem.

Experiments show that large differences between function values can cause the
interpolant to oscillate very strongly. Thus its minimal value can be much below
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Table 1. Dixon-Szegö test functions and their dimension, the domain and the number of
local and global minima

Function Dimension No. of local No. of global Domain

minima minima

Branin 2 3 3 [−5, 10] × [0,15]
Goldstein-Price 2 4 1 [−2, 2]2

Hartman 3 3 4 1 [0, 1]3

Shekel 5 4 5 1 [0,10]4

Shekel 7 4 7 1 [0,10]4

Shekel 10 4 10 1 [0,10]4

Hartman 6 6 4 1 [0, 1]6

the least calculated function value. We have found in numerical computations that
these inefficiencies are reduced if large function values are replaced by the median
of all available function values.

Some experiments were performed using the test functions proposed by Dixon
and Szegö [2]. Table 1 gives the name of each function, the dimension, the domain
and the number of local and global minima in that domain.

In all the cases, we use thin plate splines as interpolants, where the additional
polynomials are linear. The initial points are chosen to be the corners of the domain.
It seems that a different choice gives similar results, but this has not been studied
yet. Also, for the computation of the interpolantsn and the target value, function
values that are larger than the median of all available values are replaced by the
median.

The maximization of (3.8) is carried out using a version of the tunneling method
(Levy and Montalvo [13]). When this method is at a local maximum, searches
are started in each coordinate direction, using an auxiliary function. If all these
searches fail to provide a point with a larger function value, the algorithm is stopped.
The complexity of function evaluations as well as the number of local maxima of
(3.8) increase withn, the number of iterations. This is a problem, whenn is large,
but in our experiments the time needed to solve the auxiliary problem normally
was only a few seconds.

Finally, the target valuesf ∗n are determined as follows. The idea is to perform
cycles ofN + 1 iterations for someN ∈ IN , where each cycle employs a range of
target values, starting with a low one (global search), and ending with a value off ∗n
that is close to minsn(y) (local search). Then we go back to a global search, starting
the cycle again. The results that we report have been obtained using the following
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Table 2. Number of function evaluations for our method in comparison to DIRECT, DE,
EGO and MCS with two different stopping criteria

Test function Error< 1% Error<0.01%

RBF DIRECT DE EGO RBF DIRECT MCS

Branin 44 63 1190 28 64 195 41

Goldstein–Price 63 101 1018 32 76 191 81

Hartman 3 43 83 476 35 158 199 79

Shekel 5 76 103 6400 – 100 155 83

Shekel 7 76 97 6194 – 125 145 129

Shekel 10 51 97 6251 – 112 145 103

Hartman 6 112 213 7220 121 160 571 111

strategy. We choose the cycle lengthN = 5. Let the number of initial points be
n0, let the cycle start atn = ñ, and let the function values be ordered, i.e.f (x1) 6
. . . 6 f (xn). If f (x1) = f (xn), the interpolant is a constant function, because
we pickm > 0, so the maximization of (3.8) is equivalent to the maximization
of |1/µn|, if f ∗n < f (x1). In this case, we choosef ∗n = −∞. Otherwise, for
ñ 6 n 6 ñ+N − 1, we set

f ∗n = min
y∈D sn(y)−

(
N − n+ ñ

N

)2(
f (xσ(n))−min

y∈D sn(y)
)
,

whereσ (ñ) = ñ andσ (n) = σ (n−1)−
⌊
n− n0

N

⌋
, ñ+16 n 6 ñ+N−1. When

n = ñ+N we setf ∗n = minsn(y). However, we have to be careful here since this
choice is only admissible ifx1 is not one of the global minimizers ofsn. Thus, we
do not accept this choice, if(f (x1)−minsn(y)) < 10−4|f (x1)|, providedf (x1) is
nonzero, or iff (x1) −miny∈D sn(y) < 10−4, if f (x1) = 0. In these cases, we set
f ∗n = minsn(y) − 10−2|f (x1)| andf ∗n = minsn(y) − 10−2, respectively, to try to
obtain a yet lower function value.

The algorithm is stopped when the relative error|fbest− f ∗|/|f ∗| becomes
smaller than a fixedε, wheref ∗ is the global optimum andfbest the current best
function value. The optimal values of all test functions in Table 1 are nonzero, so
this stopping criterion is valid.

Table 2 reports the number of function evaluations needed to achieve a relative
error less than 1% and 0.01%. RBF denotes our method using the target value
strategy described above. DIRECT (Jones, Perttunen and Stuckman [9]) and MCS
(Multilevel Coordinate Search, Huyer and Neumaier [5]) are recent methods that,
according to the results presented in those papers, are more efficient than most of
their competitors on the Dixon-Szegö testbed. DE (Differential Evolution, Storn
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and Price [18]) is an evolutionary method that operates only at the global level,
which explains the large number of function evaluations. EGO (Efficient Global
Optimization, Jones, Schonlau and Welch [10]) is the latest method known to us.
Unfortunately, no tests are reported on the Shekel test functions. All the results
from these methods are quoted from the papers mentioned above. For the DIRECT
method, numbers of evaluations for both the 1% and the 0.01% stopping criterion
are reported. For DE and EGO only results for the 1% criterion are available,
whereas MCS only uses the 0.01% criterion. It should be noted that MCS uses
a local search method at some stages of the algorithm, and in all the cases of Table
2 the first local minimum found is the global one.

7. Conclusions

Our global optimization method converges to the global minimizer of an arbitrary
continuous functionf , if we choose the sequence of target values carefully. Iff is
sufficiently smooth, there is even a suitable condition on this sequence that can be
checked by the algorithm. However, it is unsatisfactory that the multiquadric and
Gaussian cases are excluded from the statement of Theorem 7. It is believed that
the convergence result is true also in these cases, although they are not covered by
the analysis in [3].

Table 2 shows that the method is able to compete with other global optimization
methods on the set of the Dixon-Szegö test functions. The test functions in this
testbed, however, are of relatively low dimension, and the number of local and
global minima is very small. Therefore, it is necessary to test the method on other
sets of test functions and of course on real-world applications.

The maximization of the utility functionhn is still an unresolved problem.
The tunneling method that has been used for the experiments requires too many
parameters whose choice is not obvious. Jones, Schonlau and Welch [10] describe
a branch-and-bound algorithm to solve an auxiliary problem in the EGO method.
It is interesting to investigate how this approach can be used for our method. As
mentioned above, another option is to carry out local searches from one or several
starting points. The challenge here is to find suitable starting points that yield points
with large values ofhn.

The relation to the P-algorithm is very interesting. It is hoped that the connec-
tions can be exploited further. In particular, the choice of the target values and the
determination of the point of highest utility are common problems. Solutions to
these problems may be developed that are useful for both methods.

Appendix

The main convergence theorem, Theorem 7, is proved in this appendix. In order to
establish it, some lemmas are needed on the behaviour of the coefficientsµn.
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LEMMA 12. Let φ be any of the radial basis functions in (2.2), and letm0 and
m > m0 be chosen as in Section 2. LetD ⊂ Rd be compact, and let(xn)n∈IN be a
convergent sequence inD with pairwise different elements. Further, let(yn)n∈IN be
a sequence inD such thatyn 6= xn, n ∈ IN , and limn→∞ ‖xn − yn‖ = 0. Choose
k points z1, . . . , zk ∈ D that satisfy condition (2.11). Assume(xn) converges to
x∗ ∈ D \ {z1, . . . , zk}. For anyy ∈ D \ {z1, . . . , zk, yn+1}, let ˜̀y be the cardinal
spline that interpolates the data(z1,0), . . . , (zk,0), (yn+1,0) and (y,1), and let
µ̃n(y) be the coefficient of̀̃y that satisfies(−1)m0+1µ̃n(y) = 〈 ˜̀y, ˜̀y〉. Then, for
06 ρ < 1 in the linear case and06 ρ < 2 in the other cases,

lim
n→∞(−1)m0+1‖yn+1 − xn+1‖ρ µ̃n(xn+1) = ∞. (A.1)

Proof. Let An andAn(xn+1) be the matrices of the form (2.10) for the in-
terpolation pointsz1, . . . , zk, yn+1 and z1, . . . , zk, yn+1, xn+1, respectively. For
sufficiently largen, neitherxn+1 nor yn+1 is in the set{z1, . . . , zk}. Thus,An and
An(xn+1) are nonsingular. Cramer’s Rule implies

µ̃n(xn+1) = detAn
detAn(xn+1)

. (A.2)

Also, letA∗ be the matrix of the form (2.10) for the interpolation pointsz1, . . . , zk,
x∗. By the continuity of the determinant,

lim
n→∞ detAn = detA∗ 6= 0. (A.3)

In order to investigate the behaviour of‖yn+1 − xn+1‖−ρ detAn(xn+1), we let

v(y) :=
(
φ(‖y − z1‖), . . . , φ(‖y − zk‖)

)T
, y ∈ D,

and

p(y) :=
(
p1(y), . . . , pm̂(y)

)T
, y ∈ D,

wherem̂ = dim5m andp1, . . . , pm̂ are as in Section 2. ThusAn(xn+1) is the
matrix

8 v(yn+1) v(xn+1) P

v(yn+1)
T φ(0) φ(‖yn+1 − xn+1‖) p(yn+1)

T

v(xn+1)
T φ(‖yn+1 − xn+1‖) φ(0) p(xn+1)

T

P T p(yn+1) p(xn+1) 0

 , (A.4)

where8 andP correspond to (2.3) and (2.9), respectively, if we setn = k and
{x1, . . . , xn} = {z1, . . . , zk}. Now the rows

( v(yn+1)
T φ(0) φ(‖yn+1 − xn+1‖) p(yn+1)

T )

and ( v(xn+1)
T φ(‖yn+1 − xn+1‖) φ(0) p(xn+1)

T )
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have the same limit asn→∞, so detAn(xn+1) tends to zero. Hence the properties
(A.2) and (A.3) prove the assertion (A.1) forρ = 0.

For ρ > 0, note that the value of the determinant of the matrix (A.4) does not
change if we replace the second row by the difference between the second and third
rows, and subsequently replace the second column by the difference between the
second and third columns. Then the new second column of detAn(xn+1) becomes

v(yn+1)− v(xn+1)

2[φ(0) − φ(‖yn+1−xn+1‖)]
φ(‖yn+1−xn+1‖)−φ(0)
p(yn+1)− p(xn+1)

 , (A.5)

and the new second row is its transpose. We have to divide the determinant by
‖yn+1 − xn+1‖ρ , so we divide the second row and then the second column by
‖yn+1−xn+1‖ρ/2. Thus all components of (A.5) are multiplied by‖yn+1−xn+1‖ρ/2,
except the second one which is multiplied by‖yn+1 − xn+1‖ρ . Then the following
remarks are helpful.

For each choice ofφ andj = 1, . . . , k, the functionφ(‖zj − x‖), x ∈ D , is
Lipschitz continuous, so the components ofv(yn+1)− v(xn+1) satisfy

|φ(‖zj − yn+1‖)− φ(‖zj − xn+1‖)| 6 const‖xn+1 − yn+1‖, j = 1, . . . , k.

Thus forρ < 2 we have

lim
n→∞

1

‖yn+1 − xn+1‖ρ/2
[
φ(‖zj − yn+1‖)− φ(‖zj − xn+1‖)

]
= 0, (A.6)

Similarly, for ρ < 2, the components ofp(yn+1)− p(xn+1) have the property

lim
n→∞

1

‖yn+1 − xn+1‖ρ/2
[
pi(yn+1)− pi(xn+1)

]
= 0 (A.7)

Finally, we deduce

lim
n→∞

1

‖yn+1 − xn+1‖ρ
[
φ(‖yn+1 − xn+1‖)− φ(0)

]
= 0, (A.8)

for ρ < 1 in the linear case, forρ < 2 in the thin plate spline, multiquadric and
Gaussian cases, and forρ < 3 in the cubic case. This is clear in the linear, thin
plate spline and cubic cases. In the other two cases it follows from second order
Taylor expansion ofφ, becauseφ′(0) = 0 and φ′′ is bounded onR+. Thus (A.5) –
(A.8) provide

lim
n→∞‖yn+1 − xn+1‖−ρ detAn(xn+1) = 0,

for the given values ofρ. Hence (A.2) and (A.3) imply (A.1). 2
Now we obtain
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LEMMA 13. Letφ,m0 andm be chosen as in Lemma 12, and let(xn)n∈IN be the
sequence generated by Algorithm 3. Further, let0 6 ρ < 1 in the linear case and
06 ρ < 2 in the other cases. Then, for every convergent subsequence(xnk )k∈IN of
(xn),

lim
k→∞(−1)m0+11ρ

nk
µnk−1(xnk ) = ∞,

whereµn(.) is defined in Section 3 and1nk is expression (4.1) forn = nk.
Proof. For n > 2, definejn to be the natural numberj that minimizes‖xn −

xj‖, j < n, so1n = ‖xn − xjn‖. Further, let(yn)n∈IN be the sequence

yn :=
{
x2, n = 1,
xjn, n > 2.

Let (xnk )k∈IN be a subsequence of(xn)n∈IN , that converges tox∗, say. Convergence
and the choice of(yn)n∈IN imply limk→∞ ‖xnk − ynk‖ = 0.

The initial step of Algorithm 3 provides a finite number of points that satisfy
(2.11), so the initial interpolation matrix (2.10) is nonsingular. If one of these points
is x∗, we pick xnk0 in a neighbourhood ofx∗ so that the interpolation matrix to
xnk0 and the other initial points is also nonsingular. Therefore there exist points
x̂1, . . . , x̂l in (xn)n∈IN such that their interpolation matrix is nonsingular, andx∗ 6∈
{x̂1, . . . , x̂l}.

For sufficiently largek ∈ IN , such thatynk 6∈ {x̂1, . . . , x̂l}, and for anyy ∈ D \
{x1, . . . , xnk−1}, we let ˆ̀k(y, .) be the radial function that interpolates(x̂1,0), . . . ,
(x̂l,0), (ynk ,0) and(y,1), and we let̀ nk−1(y, .) be the interpolant to(x1,0), . . . ,
(xnk−1,0) and (y,1). Becausè nk−1(y, .) interpolates(ynk ,0) and (x̂i ,0), i =
1, . . . , l, for sufficiently largek, (3.6) and Theorem 1 imply the inequality

(−1)m0+1µ̂k(y) = 〈 ˆ̀k(y, .), ˆ̀k(y, .)〉
(A.9)

6 〈`nk−1(y, .), `nk−1(y, .)〉 = (−1)m0+1µnk−1(y)

for the coefficientŝµk andµnk−1.
Now we apply Lemma 12 in the case when{z1, . . . , zk} is the set{x̂1, . . . , x̂l}

andn = nk − 1. It follows that

lim
k→∞

(−1)m0+11ρ
nk
µ̂k(xnk ) = lim

k→∞
(−1)m0+1‖xnk − ynk‖ρµ̂k(xnk ) = ∞,

with the choice ofρ stated in Lemma 12. Thus, settingy = xnk in (A.9), we obtain
that(−1)m0+11ρ

nk
µnk−1(xnk ) tends to infinity ask→∞. 2

Finally we show, using Proposition 6, that the coefficientsµn(y) are uniformly
bounded, ify is bounded away from the points that are generated by the algorithm.

LEMMA 14. Let φ(r) = r, φ(r) = r2 log r or φ(r) = r3. Further, choose the
integerm such that06 m 6 d in the linear case,16 m 6 d + 1 in the thin plate



A RADIAL BASIS FUNCTION METHOD FOR GLOBAL OPTIMIZATION 225

spline case and1 6 m 6 d + 2 in the cubic case. Let(xn)n∈IN be the sequence
generated by Algorithm 3, and letn0 be the number of points chosen in the initial
step. Assume that there existy0 ∈ D and a neighbourhoodNδ := {x ∈ Rd :
‖x − y0‖ < δ}, δ > 0, that does not contain any point of the sequence. Then there
existsK > 0, that depends only ony0 andδ, such that

(−1)m0+1µn(y0) 6 K ∀ n > n0.

Proof.For anyn > n0, let `n be the radial function that is defined by`n(xi) =
0, i = 1, . . . , n, and`n(y0) = 1. There exists a compactly supported infinitely dif-
ferentiable functionF that takes the value 1 aty0 and 0 onRd \Nδ. It follows from
Proposition 6 thatF ∈ Nφ,m. `n interpolatesF at x1, . . . , xn andy0. Therefore,
there is a positive numberK, depending ony0 andδ, such that

(−1)m0+1µn(y0) = 〈`n, `n〉 6 K, n > n0. 2

Now we are ready to prove Theorem 7.

Proof of Theorem 7.Assume there isy0 ∈ D and an open neighbourhoodU =
{x ∈ Rd : ‖x − y0‖ < δ}, δ > 0, that does not contain an interpolation point. The
iteration step of Algorithm 3 gives

gn(xn+1) 6 gn(y0), n > n0,

wheren0 is the number of points chosen in the initial step of the algorithm.
By assumption (4.2), there is a subsequence(nk)k∈IN of the natural numbers

such that

min
y∈D snk−1(y)− f ∗nk−1 > τ1

ρ/2
nk−1‖snk−1‖∞ > 0, k ∈ IN, (A.10)

with τ > 0, 1nk−1 being the expression (4.1) forn = nk − 1, 0 6 ρ < 1 in
the linear and 06 ρ < 2 in the thin plate spline and cubic cases. The sequence
(xnk )k∈IN is a sequence in a compact set, thus it contains a convergent subsequence.
Therefore, without loss of generality, we assume that(xnk )k∈IN itself converges.

For allk ∈ IN , xnk is the minimizer ofgnk−1(x). Thus, iff ∗nk−1 > −∞,

(−1)m0+1µnk−1(xnk )[snk−1(xnk )− f ∗nk−1]2

6 (−1)m0+1µnk−1(y0)[snk−1(y0)− f ∗nk−1]2.
(A.11)
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If ‖snk−1‖∞ > 0, this inequality, condition (A.10) and the definition of‖.‖∞
provide

(−1)m0+1µnk−1(xnk ) 6 (−1)m0+1µnk−1(y0)

[
snk−1(y0)− f ∗nk−1

snk−1(xnk )− f ∗nk−1

]2

6 (−1)m0+1µnk−1(y0)

[
1+ |snk−1(y0)− snk−1(xnk )|

snk−1(xnk )− f ∗nk−1

]2

6 (−1)m0+1µnk−1(y0)

[
1+ 1

τ1
ρ/2
nk

|snk−1(y0)− snk−1(xnk )|
‖snk−1‖∞

]2

6 (−1)m0+1µnk−1(y0)

[
1+ 2

τ1
ρ/2
nk

]2

.

If ‖snk−1‖∞ = 0, snk−1(y) − f ∗nk−1 is a positive number independent ofy, thus
(A.11) gives

(−1)m0+1µnk−1(xnk ) 6 (−1)m0+1µnk−1(y0)

6 (−1)m0+1µnk−1(y0)

[
1+ 2

τ1
ρ/2
nk

]2

,

for any positiveτ , as before. Remark 2 shows that this inequality holds also in the
casef ∗nk−1 = −∞. Multiplying both sides by1ρ

nk
yields

1ρ
nk
(−1)m0+1µnk−1(xnk ) 6 (−1)m0+1µnk−1(y0)

[
1ρ/2
nk
+ 2

τ

]2

. (A.12)

By Lemma 13, the left-hand side of (A.12) tends to infinity ask tends to infinity.
However, Lemma 14 states that(−1)m0+1µn(y0) is bounded above by a constant
that does not depend onn. Thus the right-hand side of (A.12) is bounded by a con-
stant that is independent ofk which contradicts (A.12). Therefore there is a point
in the sequence that is an element ofU . This implies that in each neighbourhood of
an arbitraryy0 ∈ D there are infinitely many elements of(xn)n∈IN , so the sequence
is dense inD . 2
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